

E B O O K

DESENVOLVIMENTO WEB

COM PYTHON E DJANGO

https://bit.ly/3coubjF

SUMÁRIO
CAPÍTULO 1: INTRODUÇÃO 4

FLUXO DE UMA REQUISIÇÃO 6

CAPÍTULO 2: INSTALAÇÃO 8

HELLO WORLD, DJANGO! 9

CAPÍTULO 3: CAMADA MODEL 15

ONDE ESTAMOS… 15

CAMADA MODEL 16

DB BROWSER FOR SQLITE 22

API DE ACESSO A DADOS 23

CAPÍTULO 4: CAMADA VIEW 27

ONDE ESTAMOS… 27

CAMADA VIEW 28

FUNÇÕES vs CLASS BASED VIEWS 30

CLASS BASED VIEWS 31

FUNÇÕES (FUNCTION BASED VIEWS) 33

DEBUGANDO UMA REQUISIÇÃO NO PYCHARM 34

AS PRINCIPAIS CLASS BASED VIEWS 36

FORMS NO DJANGO 42

MIDDLEWARES 48

CAPÍTULO 5: CAMADA TEMPLATE 53

ONDE ESTAMOS… 54

DEFINIÇÃO DE TEMPLATE 55

CONFIGURAÇÃO 57

DJANGO TEMPLATE LANGUAGE (DTL) 57

CONSTRUINDO A BASE DO TEMPLATE 58

TAGS E FILTROS CUSTOMIZADOS 72

FILTROS DO DJANGO 79

C A P Í T U L O 1

INTRODUÇÃO

Django é um framework web de alto nível, escrito em Python que

encoraja o desenvolvimento limpo de aplicações web.

E antes de mergulharmos no Django, vamos entender primeiro sobre o

Desenvolvimento Web! No nicho de Desenvolvimento Web, o Pythonista tem

como objetivo o desenvolvimento de páginas Web, plataformas ou qualquer

outra aplicação que seja executada em um navegador - como o Google Chrome

e o Firefox - com conexão à internet.

Dentro do Desenvolvimento Web existem 2 áreas principais: o Frontend

e o Backend. O Diagrama abaixo exemplifica como os dois interagem e em

seguida explicamos cada um deles:

Diagrama Frontend x Backend

● O Frontend é constituído por tudo aquilo que o Usuário final vê e

interage e é composto, basicamente, das páginas web que esse Usuário

terá acesso. Algumas tecnologias geralmente utilizadas são: React,

Angular, HTML, CSS e Javascript.

● Já o Backend, também chamado de Servidor, tem as seguintes

responsabilidades: processa as requisições enviadas pelo Frontend,

mantém as Regras de Negócio do sistema e gerencia o acesso ao Banco

de Dados. É aqui que o Python está presente!

Existem bibliotecas que auxiliam (e muito) no desenvolvimento de

aplicações web: os chamados frameworks! Um framework é um conjunto de

ferramentas, técnicas e convenções para facilitar o desenvolvimento de algum

tipo específico de aplicação. Sendo assim, temos diversos tipos de frameworks

diferentes, por exemplo:

● Temos Frameworks Frontend, que facilitam a criação de aplicações web

que são executadas nos navegadores dos usuários de um sistema.

Exemplos: React, Angular, Vue.js.

● Temos Frameworks Mobile, que facilitam o desenvolvimento de

aplicações mobile. Exemplo: Ionic e React Native.

● Temos Frameworks Web, que facilitam o desenvolvimento de aplicações

web, abstraindo detalhes de baixo nível (como protocolos de rede, acesso

à banco de dados, tratamento de requisições HTTP). Exemplos: Ruby on

Rails (Ruby), Spring (Java), Express (Node.js).

E agora, voltando para o nosso querido Django… Desenvolvido por

experientes desenvolvedores, Django toma conta da parte pesada do

desenvolvimento web, como tratamento de requisições, mapeamento

objeto-relacional, preparação de respostas HTTP, para que, dessa forma, você

gaste seu esforço com aquilo que realmente interessa: as regras de negócio

da sua aplicação!

Ele foi desenvolvido com uma preocupação extra em segurança, evitando

os mais comuns tipos de ataques web, como Cross Site Scripting (XSS), Cross

Site Request Forgery (CSRF), SQL injection, entre outros.

É bastante escalável: Django foi desenvolvido para tirar vantagem da

maior quantidade de hardware possível (desde que você queira). Django usa

https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/SQL_Injection

uma arquitetura “zero-compartilhamento”, o que significa que você pode

adicionar mais recursos em qualquer nível: servidores de banco de dados,

cache e/ou servidores de aplicação.

É utilizado por grandes empresas ao redor do mundo:

E, para que você possa dominar esse framework como um todo,

utilizaremos uma abordagem bottom-up (de baixo para cima), isto é:

1. Primeiro, vamos começar do começo, instalando o Django!

2. Depois abordaremos a Camada de Modelos, que é onde fica centralizado

o acesso ao Banco de Dados e a modelagem das entidade da nossa

aplicação - que chamamos de Modelos.

3. Em seguida veremos a Camada de Views, que é onde implementamos

as regras de negócio da nossa aplicação.

4. Por fim, veremos a Camada de Templates, que é a parte do framework

responsável por renderizar páginas web, onde utilizaremos HTML, CSS,

Javascript e a biblioteca de componentes Bootstrap.

Como disse anteriormente, o Django é um framework para construção de

aplicações web em Python. Além disso, ele é estruturado em camadas, sendo

chamado de um Framework MTV - isto é: Model-Template-View - que são

exatamente as camadas que veremos a seguir.

E para entender como o Django funciona, vamos fazer um Raio-X de uma

Requisição, desde o navegador do usuário até o servidor que vai processá-la.

FLUXO DE UMA REQUISIÇÃO

Para ajudar melhor, vamos analisar o fluxo de uma requisição saindo do

navegador do usuário, passando para o servidor onde o Django está sendo

executado, retornando novamente ao navegador.

O Django é dividido em três camadas: a Camada de Modelos, a Camada

de Views e a Camada de Templates. Veremos cada uma nos Capítulos

seguintes. Mas agora vamos dar os primeiros passos com o Django, começando

pela sua instalação! Então ajeita sua cadeira, prepara o café e vamos nessa!

C A P Í T U L O 2

INSTALAÇÃO

Primeiro, precisamos nos certificar que o Python e o PIP (gerenciador de

pacotes do Python) estão instalados corretamente.

Vá no seu terminal ou prompt de comando e digite o comando python

--version. Deve ser aberto o terminal interativo do Python (se algo como bash:

command not found aparecer, é por que sua instalação não está correta).

Agora, digite pip --version. A saída desse comando deve ser a versão

instalada do pip. Se ele não estiver disponível, faça o download do instalador

nesse link e execute o código.

Vamos executar esse projeto em um ambiente virtual utilizando o

virtualenv para que as dependências não atrapalhem as que já estão instaladas

no seu computador (para saber mais sobre o virtualenv, leia esse post aqui

sobre desenvolvimento em ambientes virtuais).

Após criarmos nosso ambiente virtual, instalamos o Django com:

pip install django

Para saber se a instalação está correta, podemos abrir o terminal

interativo do Python (digitando python no seu terminal ou prompt de

comandos) e executar:

import django

print(django.get_version())

A saída deve ser a versão do Django que acabou de ser instalada.

https://bootstrap.pypa.io/get-pip.py
https://bootstrap.pypa.io/get-pip.py
https://pythonacademy.com.br/blog/python-e-virtualenv-como-programar-em-ambientes-virtuais

HELLO WORLD, DJANGO!
Com tudo instalado corretamente, vamos agora fazer um projeto para

que você veja o Django em ação!

Nosso projeto é fazer um sistema de gerenciamento de Funcionários. Ou

seja, vamos fazer uma aplicação onde será possível adicionar, listar, atualizar e

deletar Funcionários.

Vamos começar criando a estrutura de diretórios e arquivos principais

para o funcionamento do Django. Para isso, o pessoal do Django fez um

comando muito bacana para nós: o django-admin.py.

Se sua instalação estiver correta, esse comando já foi adicionado ao seu

PATH!

Tente digitar django-admin --version no seu terminal (se não estiver

disponível, tente django-admin.py --version).

Digitando apenas django-admin, é esperado que aparece a lista de

comandos disponíveis, similar a:

Available subcommands:

[django]
check
compilemessages
createcachetable
dbshell
diffsettings
dumpdata
flush
inspectdb
loaddata
makemessages
makemigrations
migrate
runserver
sendtestemail
shell
showmigrations
sqlflush
sqlmigrate
sqlsequencereset
squashmigrations
startapp
startproject
test
testserver

Por ora, estamos interessados no comando startproject que cria um

novo projeto com a estrutura de diretórios certinha para começarmos a

desenvolver!

Executamos esse comando da seguinte forma:

django-admin.py startproject helloworld

Criando a seguinte estrutura de diretórios:

/helloworld
- __init__.py
- asgi.py
- settings.py
- urls.py
- wsgi.py

- manage.py

Explicando cada arquivo:

● helloworld/asgi.py: Aqui configuramos a interface entre o servidor de

aplicação e nossa aplicação Django, com capacidades assíncronas (não se

preocupem com isso por enquanto), através do padrão ASGI.

● helloworld/settings.py: Arquivo muito importante com as configurações

do nosso projeto, como configurações do banco de dados, aplicativos

instalados, configuração de arquivos estáticos e muito mais.

● helloworld/urls.py: Arquivo de configuração de rotas (ou URLConf). É nele

que configuramos quem responde a qual URL.

● helloworld/wsgi.py: Aqui configuramos a interface entre o servidor de

aplicação e nossa aplicação Django, através do padrão WSGI

● manage.py: Arquivo gerado automaticamente pelo Django que expõe

comandos importantes para manutenção da nossa aplicação.

Para testar, vá para a pasta raíz do projeto e execute o comando python

manage.py runserver.

Depois, acesse seu browser no endereço http://localhost:8000.

A seguinte tela deve ser mostrada:

Se ela aparecer, nossa configuração está correta e estamos prontos para

começarmos a desenvolver nossa aplicação!

Agora, vamos criar um app chamado website para separarmos os arquivos

de configuração da nossa aplicação, que vão ficar na pasta /helloworld, dos

arquivos relacionados ao website.

De acordo com a documentação, um app no Django é:

Uma aplicação Web que faz alguma coisa, por exemplo - um blog, um banco de

dados de registros públicos ou um aplicativo de pesquisa. Já um projeto é uma

coleção de configurações e apps para um website em particular.

Um projeto pode ter vários apps e um app pode estar presente em

diversos projetos.

A fim de criar um novo app, o Django provê outro comando,

chamado django-admin.py startapp.

Ele nos ajuda a criar os arquivos e diretórios necessários para tal objetivo.

Na raíz do projeto, execute:

django-admin.py startapp website

Agora, vamos criar algumas pastas para organizar a estrutura da nossa

aplicação. Primeiro, crie a pasta templates dentro de website. Dentro dela, crie

uma pasta website e dentro dela, uma pasta chamada _layouts.

Crie também a pasta static dentro de website, para guardar os arquivos

estáticos (arquivos CSS, Javascript, imagens, fontes, etc). Dentro dela crie uma

pasta website (isto é feito por questões de convenção do próprio framework).

Também dentro de static, crie: uma pasta css, uma pasta img e uma pasta js.

Assim, sua estrutura de diretórios deve estar similar a:

Observação: Nós criamos uma pasta com o nome do app (website, no

caso) dentro das pastas static e templates para que o Django crie o

namespace do app. Dessa forma, o Django entende onde buscar os recursos

quando você precisar!

Para que o Django enxergue esse app que acabamos de criar, é

necessário adicioná-lo à lista de apps instalados do Django. Fazemos isso

atualizando a configuração INSTALLED_APPS no arquivo de configuração

helloworld/settings.py

Ela é uma lista e diz ao Django o conjunto de apps que devem ser

gerenciados no nosso projeto.

É necessário adicionar os apps da nossa aplicação à essa lista para que o

Django as enxergue. Para isso, procure por:

INSTALLED_APPS = [
'django.contrib.admin',
'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions',
'django.contrib.messages',
'django.contrib.staticfiles',

]

E adicione website e helloworld, ficando assim:

INSTALLED_APPS = [
'django.contrib.admin',
'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions',
'django.contrib.messages',
'django.contrib.staticfiles',
'helloworld',
'website'

]

Agora, vamos fazer algumas alterações na estrutura do projeto para

organizar e centralizar algumas configurações. Essa é uma configuração pessoal

que eu sempre faço nos projetos que desenvolvo e que facilita a vida quando

desenvolvemos utilizando Django.

1. Primeiro, vamos passar o arquivo de modelos models.py de /website

para /helloworld, pois os arquivos comuns ao projeto vão ficar

centralizados no app helloworld (geralmente para projetos menores e

medianos temos apenas um arquivo models.py para o projeto todo. A

separação do arquivo de modelos geralmente só ocorre em projetos

grandes).

2. Como não temos mais o arquivo de modelos na pasta /website, podemos,

então, excluir a pasta /migrations e o migrations.py, pois estes serão

gerados e gerenciados pelo app helloworld.

3. Crie um arquivo de rotas urls.py em /website. Vamos alterá-lo

posteriormente.

Por fim, você deve estar com a estrutura de diretórios da seguinte forma:

CONCLUSÃO DO CAPÍTULO

Neste capítulo, vimos um pouco sobre o Django, suas principais

características, sua estrutura de diretórios e como começar a desenvolver

utilizando-o!

Vimos as facilidades que o comando django-admin trazem e como

utilizá-lo para criar nosso projeto.

Também o utilizamos para criar apps, que são estruturas modulares do

nosso projeto, usados para organizar e separar funções específicas da nossa

aplicação.

No próximo capítulo, vamos falar sobre a Camada Model do Django, que

é onde residem as entidades do nosso sistema e toda a lógica de acesso a

dados!

C A P Í T U L O 3

CAMADA MODEL

A Camada de Modelos tem uma função essencial na arquitetura das

aplicações desenvolvidas com o Django.

É nela que descrevemos os campos e comportamentos das entidades

que irão compor nosso sistema e que serão traduzidas em Tabelas do nosso

Banco de Dados.

Também é nela que reside a lógica de acesso aos dados da nossa

aplicação. Neste capítulo, você verá como o Django facilita nossa vida ao

manipular os dados do nosso sistema através da poderosa API de Acesso a

Dados.

Mas primeiro, vamos nos situar!

ONDE ESTAMOS…
No primeiro capítulo, tratamos de conceitos introdutórios do framework,

uma visão geral da sua arquitetura

Já no segundo capítulo, fizemos a instalação do Django e a criação do

famoso Hello World em Django.

Agora, vamos tratar da primeira camada do Dango, a Camada Model!

Vamos mergulhar um pouco mais e conhecer a camada Model da

arquitetura MTV do Django (Model-Template-View).

Nela, vamos descrever, em forma de classes, as entidades do nosso

sistema, para que o resto (Template e View) façam sentido.

CAMADA MODEL
Vamos começar pelo básico: pela definição de modelo!

Um modelo - também chamado de entidade do sistema - é a descrição

do dado que será gerenciado pela sua aplicação.

Ele contém os campos e comportamentos desses dados. No fim, cada

modelo vai ser transformado em uma tabela no banco de dados: processo que

é feito pelo próprio Django, portanto não se preocupe!

No Django, um modelo tem basicamente duas características:

● É uma classe que herda de django.db.models.Model

● Cada atributo representa um campo da tabela

Com isso, o Django gera automaticamente uma API (Application

Programming Interface) de Acesso a Dados. Essa API foi desenhada para

facilitar e muito nossa vida quando formos gerenciar (adicionar, excluir e

atualizar) os dados da nossa aplicação.

Para entendermos melhor, vamos modelar a principal entidade do

sistema que vamos desenvolver: a entidade Funcionário!

Vamos supor que sua empresa está desenvolvendo um sistema de

gerenciamento dos funcionários e lhe foi dada a tarefa de modelar e

desenvolver o acesso aos dados da entidade Funcionário.

Pensando calmamente em sua estação de trabalho enquanto seu chefe

lhe cobra diversas metas e dizendo que o deadline do projeto foi adiantado em

duas semanas você pensa nos seguintes atributos para tal classe:

● Nome

● Sobrenome

● CPF

● Tempo de serviço

● Remuneração

Agora, é necessário traduzir isso para código Python para que o Django

possa entender.

No Django, os modelos são descritos no arquivo models.py.

Ele já foi criado no Capítulo anterior e está presente na pasta

helloworld/models.py.

Nele, nós iremos descrever cada atributo (nome, sobrenome, CPF e etc)

como um campo (ou Field) da nossa classe de Modelo.

Vamos chamar essa classe de Funcionário.

Seguindo as duas características que apresentamos anteriormente

(herdar da classe Model e mapear os atributos da entidade através de campos),

podemos descrever nosso modelo da seguinte forma:

from django.db import models

class Funcionario(models.Model):
nome = models.CharField(
max_length=255,
null=False,
blank=False

)

sobrenome = models.CharField(
max_length=255,
null=False,
blank=False

)

cpf = models.CharField(
max_length=14,
null=False,
blank=False

)

tempo_de_servico = models.IntegerField(
default=0,
null=False,
blank=False

)

remuneracao = models.DecimalField(
max_digits=8,
decimal_places=2,
null=False,
blank=False

)

objetos = models.Manager()

E agora vamos à explicação deste modelo:

● Cada campo tem um tipo.

● O tipo CharField representa uma string.

● O tipo PositiveIntegerField representa um número inteiro positivo.

● O tipo DecimalField representa um número decimal com precisão fixa

(geralmente utilizamos para representar valores monetários).

● Cada tipo tem um conjunto de propriedades, como: max_length para

delimitar o comprimento máximo da string; decimal_places para definir o

número de casas decimais; entre outras (a documentação de cada campo

e propriedade pode ser acessada aqui).

https://docs.djangoproject.com/en/4.0/ref/models/fields/

● O campo objetos = models.Manager() é utilizado para fazer operações de

busca e será explicado em seguida!

● Observação: não precisamos configurar o identificador id - ele é

herdado automaticamente ao herdade de django.db.models.Model!

Toda vez que alteramos os modelos da nossa aplicação Django é

necessário gerar uma Migração que vai atualizar as tabelas do nosso banco de

dados.

Nós fazemos isso através de dois comandos muito importantes que o

Django traz para nós através do script manage.py: o comando

makemigrations e o comando migrate.

O COMANDO makemigrations

O comando makemigrations analisa se foram feitas mudanças nos

modelos e, em caso positivo, cria novas migrações (Migrations) para alterar a

estrutura do seu banco de dados, refletindo as alterações feitas.

Vamos entender o que eu acabei de dizer: toda vez que você faz

uma alteração em seu modelo, é necessário que ela seja aplicada a estrutura

de tabelas do banco de dados.

A esse processo é dado o nome de Migração! De acordo com a

documentação do Django:

Migração é a forma do Django de propagar as alterações feitas em seu

modelo (adição de um novo campo, deleção de um modelo, etc…) ao seu

esquema do banco de dados. Elas foram desenvolvidas para serem (na maioria

das vezes) automáticas, mas cabe a você saber a hora de fazê-las, executá-las

e resolver os problemas comuns que possam vir a acontecer.

Portanto, toda vez que você alterar um arquivo de modelo, não se

esqueça de executar python manage.py makemigrations!

Ao executar esse comando, devemos ter a seguinte saída:

python manage.py makemigrations

Migrations for 'helloworld':
helloworld\migrations\0001_initial.py
- Create model Funcionario

Observação: Ao executar pela primeira vez, talvez seja necessário

executar o comando referenciando o app onde os modelos estão definidos,

dessa forma: python manage.py makemigrations helloworld. Depois disso,

apenas python manage.py makemigrations deve bastar!

Agora, perceba que foi criado um diretório chamado migrations dentro

da pasta helloworld.

Nele, você pode ver um arquivo chamado 0001_initial.py: ele contém a

Migration que possibilita a criação do model Funcionario no banco de dados!

O COMANDO migrate

Quando executamos o makemigrations, o Django cria o banco de dados e

as migrations, mas não as executa, isto é: não aplica realmente as alterações no

banco de dados.

Para que o Django aplique essa Migrações, são necessárias três coisas,

basicamente:

1. Que a configuração da interface com o banco de dados esteja descrita no

arquivo settings.py

2. Que os Modelos e Migrações estejam definidos para esse projeto.

3. Execução do comando migrate

Se você criou o projeto com django-admin.py createproject helloworld,

a configuração padrão foi aplicada. Procure pela configuração DATABASES no

settings.py.

Ela deve ser a seguinte:

DATABASES = {
'default': {
'ENGINE': 'django.db.backends.sqlite3',
'NAME': BASE_DIR / 'db.sqlite3',

}
}

Por padrão, o Django utiliza um banco de dados leve chamado SQLite. Já

já vamos falar mais sobre ele.

https://www.sqlite.org/index.html

Sobre os modelos e migrations, eles já foram feitos com a definição

do Funcionário no arquivo models.py e com a execução do comando

makemigrations.

Agora só falta executar o comando migrate, para realmente alterar a

estrutura do Banco de Dados!

Para isso, vamos para a raíz do projeto (onde está o script manage.py) e

executamos: python manage.py migrate. A saída deve ser:

$ python manage.py migrate

Operations to perform:
Apply all migrations: admin, auth, contenttypes, helloworld, sessions

Running migrations:
Applying contenttypes.0001_initial... OK
Applying auth.0001_initial... OK
Applying admin.0001_initial... OK
Applying admin.0002_logentry_remove_auto_add...
Applying contenttypes.0002_remove_content_ty...
Applying auth.0002_alter_permission_name_max...
Applying auth.0003_alter_user_email_max_leng...
Applying auth.0004_alter_user_username_opts...
Applying auth.0005_alter_user_last_login_nul...
Applying auth.0006_require_contenttypes_0002...
Applying auth.0007_alter_validators_add_erro...
Applying auth.0008_alter_user_username_max_l...
Applying auth.0009_alter_user_last_name_max_...
Applying helloworld.0001_initial... OK
Applying sessions.0001_initial... OK

Calma lá... Havíamos definido apenas uma Migration e foram aplicadas

15!!! Por quê???

Se lembra que a configuração INSTALLED_APPS continha vários apps (e não

apenas os nossos helloworld e website)?

Pois então, cada app desses contém seus próprios modelos e migrations.

Por isso que ao executar o comando migrate o Django aplicou tudo que estava

aguardando ser aplicado. Sacou?!

Com a execução do comando migrate, o Django irá executar diversos

comandos SQL para criar a estrutura necessária para execução da nossa

aplicação. Uma delas é a tabela referente ao nosso modelo Funcionário, similar

à:

CREATE TABLE helloworld_funcionario (
"id" serial NOT NULL PRIMARY KEY,
"nome" varchar(255) NOT NULL,
"sobrenome" varchar(255) NOT NULL,
...

);

E agora veremos como podemos analisar o banco de dados que o Django

criou de forma visual, através da aplicação DB Browser for SQLite!

DB BROWSER FOR SQLITE
Apresento-lhes uma ferramenta MUITO prática que nos auxilia verificar a

estrutura do nosso Banco de Dados: o DB Browser for SQLite!

Com ele, podemos ver a estrutura do banco de dados, alterar dados em

tempo real, fazer queries (consultas), verificar se os dados foram efetivados no

banco e muito mais!

Clique aqui para fazer o download e instalação do software. Ao terminar a

instalação, abra o DB Browser for SQLite. Você deve ter a seguinte tela:

https://sqlitebrowser.org/

Aqui, podemos clicar em “Abrir banco de dados” e procurar pelo banco

de dados do nosso projeto db.sqlite3 (ele está na raíz do projeto).

Ao importar o banco de dados, teremos uma visão geral, mostrando

Tabelas, Índices, Views e Triggers.

Para ver os dados de cada tabela, vá para a aba “Navegar dados”, escolha

nossa tabela helloworld_funcionario e…

Voilá! O que temos? NADA

Calma jovem… Ainda não adicionamos nada! Já já vamos criar

as Views e Templates e popular esse BD!

API DE ACESSO A DADOS
Com nossa classe Funcionário modelada e já instalada no Banco de

Dados, vamos agora ver a API de acesso à dados provida pelo Django que vai

facilitar muito a nossa vida!

Vamos testar a adição de um novo funcionário utilizando o shell do

Django. Para isso, digite o comando:

python manage.py shell

O shell do Django é muito útil para testar trechos de código sem ter

que executar o servidor inteiro!

Para adicionar um novo funcionário, basta criar uma instância do seu

modelo e chamar o método save() (não desenvolvemos esse método, mas

lembra que nosso modelo herdou de Models? Pois é, é de lá que ele veio).

Podemos fazer isso com o código abaixo (no shell do Django):

from helloworld.models import Funcionario

funcionario = Funcionario(
nome='Marcos',
sobrenome='da Silva',
cpf='015.458.895-50',
tempo_de_servico=5,
remuneracao=10500.00

)

funcionario.save()

E…. Pronto!

O Funcionário Marcos da Silva será salvo no seu banco!

NADA de código SQL e queries enormes!!! Tudo simples! Tudo limpo!

É importante ressaltar que antes da conclusão com sucesso do método

.save(), o registro não possui um identificador único (também chamado de ID

ou PK - Primary Key). Após a chamada ao método .save() podemos visualizar

o ID do registro da seguinte forma:

print(funcionario.id)

Saída deve ser: 1

A API de busca de dados é ainda mais completa! Nela, você constrói

sua query à nível de objeto!

Mas como assim?!

Por exemplo, para buscar todos os Funcionários, abra o shell do Django e

digite:

funcionarios = Funcionario.objetos.all()

Se lembra do tal Manager que falamos lá em cima? Então, um Manager é a

interface na qual as operações de busca são definidas para o seu modelo.

Ou seja, através do campo objetos podemos fazer queries incríveis sem

uma linha de SQL!

Exemplo de um query um pouco mais complexa:

Busque todos os funcionários que tenham mais de 3 anos de serviço, que

ganhem menos de R$ 5.000,00 de remuneração e que não tenham “Marcos”

no nome.

Podemos atingir esse objetivo com:

funcionarios = Funcionario.objetos
.exclude(nome="Marcos")
.filter(tempo_de_servico__gt=3)
.filter(remuneracao__lt=5000.00)
.all()

O método exclude() retira linhas da pesquisa (no nosso caso, vai excluir

os registros que contenham “Marcos” no nome) e filter() filtra a busca, de

acordo com os filtros que passamos!

No exemplo, para filtrar por maior que, adicionamos a string __gt (gt do

inglês greater than. Em português “maior que”) e __lt (lt do inglês less than.

Em português, “menor que”) aos campos.

O método .all() ao final da query serve para retornar todas as linhas do

banco que cumpram os filtros da nossa busca (também temos o first() que

retorna apenas o primeiro registro, o last(), que retorna o último, entre

outros).

Agora, vamos ver como é simples excluir um Funcionário:

Primeiro, encontramos o Funcionário que desejamos deletar
funcionario = Funcionario.objetos.get(id=1)

Agora, o deletamos!
funcionario.delete()

Aqui temos um método novo, o .get()! Com ele, podemos passar o

identificador único do registro que queremos encontrar. Em seguida,

podemos chamar o método .delete() para deletar um registro do banco de

dados!

Simples, né?!

A atualização de campos também é extremamente simples, bastando

buscar a instância desejada, alterar o campo e salvá-lo novamente!

Por exemplo: o funcionário de id = 13 se casou e alterou seu nome de

Marcos da Silva para Marcos da Silva Albuquerque.

Podemos fazer essa alteração no banco de dados da seguinte forma:

Primeiro, buscamos o funcionário desejado
funcionario = Funcionario.objetos.get(id=13)

Alteramos seu sobrenome
funcionario.sobrenome = f"{funcionario.sobrenome} Albuquerque"

Salvamos as alterações
funcionario.save()

CONCLUSÃO DO CAPÍTULO

Com isso, concluímos a construção do modelo da nossa aplicação!

Criamos o banco de dados, vimos como visualizar os dados com o DB

Browser for SQLite e como a API de acesso a dados do Django é simples e

poderosa!

No próximo capítulo, vamos aprender sobre a Camada View e como

adicionamos lógica de negócio à nossa aplicação Django!

C A P Í T U L O 3

CAMADA VIEW

Neste capítulo vamos abordar a Camada View do Django, que é onde

descrevemos as lógicas de negócio da nossa aplicação!

É nesta camada que vamos desenvolver os métodos que irão:

● Processar as Requisições HTTP que chegarem à nossa aplicação;

● Formular Respostas HTTP; e

● Enviá-las de volta ao usuário.

Vamos aprender o conceito das poderosas Views do Django, aprender a

diferença entre Function Based Views (FBV) e Class Based Views (CBV),

como utilizar os Forms do Django, aprender o que são Middlewares, como

desenvolvê-los e muito mais.

Então vamos nessa, que esse capítulo está repleto de código e muito

conteúdo!

Mas antes, você já sabe: vamos nos situar para saber onde estamos,

dentro do ciclo de vida de uma Requisição HTTP dentro do Framework Django.

ONDE ESTAMOS…
Primeiramente, vamos nos situar:

CAMADA VIEW
A principal responsabilidade desta camada é a de processar as

requisições vindas dos usuários, formar uma resposta e enviá-la de volta ao

usuário. E é nesta camada que residem as lógicas de negócio da nossa

aplicação.

Essa camada deve: recepcionar, processar e responder!

Na etapa de recepção das Requisições, um dos primeiros passos é

determinar qual trecho de código a processará, através do que chamamos de

roteamento de URLs!

A partir da URL que o usuário quiser acessar (/funcionarios, por

exemplo), o Django irá rotear a Requisição para quem irá tratá-la. Mas primeiro,

o Django precisa ser informado sobre qual código processa qual rota. Fazemos

isso no chamado URLconf e damos o nome a esse arquivo, por convenção,

de urls.py.

Geralmente, temos um arquivo de rotas por app do Django. Por isso

criamos o arquivo urls.py dentro da pasta /website, lá nos capítulos iniciais

deste Ebook. Como o app helloworld é o núcleo da nossa aplicação, ele faz o

papel de centralizador de rotas, isto é:

● Primeiro, a Requisição cai no arquivo /helloworld/urls.py e é roteada

para o app correspondente.

● Em seguida, o URLConf do app (/website/urls.py, no nosso caso) vai

rotear a Requisição para a View que irá processá-la.

Traduzindo em código, fazemos isso da seguinte, alterando o arquivo, o

arquivo helloworld/urls.py:

from django.urls.conf import include
from django.contrib import admin
from django.urls import path

urlpatterns = [
Inclui as URLs do app website
path('', include('website.urls', namespace='website')),

Interface administrativa
path('admin/', admin.site.urls),

]

Assim, o Django irá tentar fazer o match (casamento) de URLs primeiro

no arquivo de URLs do app Website (website/urls.py) depois no URLConf da

plataforma administrativa. Se não houver o casamento de URLs entre o que

está configurado nas rotas do Django e o que o usuário quer acessar, um erro

HTTP 404 NOT FOUND será retornado ao usuário, significando que a página - ou

rota - não foi encontrada.

Pode parecer complicado, mas ali embaixo, quando tratarmos mais sobre

Views, vai fazer mais sentido. A configuração do URLConf é bem simples, basta

definirmos qual função ou View irá processar requisições de tal URL. Por

exemplo, queremos que:

Quando um usuário tentar acessar a URL raiz da nossa aplicação /, o Django

chame a função index() para processar tal requisição.

Vejamos como poderíamos configurar esse roteamento no nosso arquivo

de rotas urls.py:

Importamos a função index() definida no arquivo views.py
from . import views

app_name = 'website'

urlpatterns contém a lista de roteamentos de URLs
urlpatterns = [
GET /
path('', views.index, name='index'),

]

O atributo app_name = 'website' define o namespace do app website

(lembre-se do décimo nono Zen do Python: namespaces são uma boa ideia!

- clique aqui para saber mais sobre o Zen do Python).

A função auxiliar path() tem a seguinte assinatura:

path(rota, view, kwargs=None, name='')

Destrinchando cada parâmetro:

● rota: string contendo a rota (URL).

● view: a função (ou classe) que irá tratar essa rota.

● kwargs: utilizado para passar dados adicionais à função ou método que irá

tratar a requisição.

● name: nome da rota. O Django utiliza o app_name mais o nome da rota para

nomear a URL. Por exemplo, no nosso caso, podemos chamar a rota raiz

'/' com 'website:index' (app_site = website e a rota raiz = index). Veja

mais sobre padrões de formato de URL.

FUNÇÕES vs CLASS BASED VIEWS
Com as URLs corretamente configuradas, o Django irá rotear Requisições

para onde você definiu. No caso acima, sua requisição irá ser processada pela

função views.index().

https://pythonacademy.com.br/zen-of-python
https://docs.djangoproject.com/pt-br/4.0/topics/http/urls/#naming-url-patterns

Podemos tratar as requisições de duas formas: através de Views

desenvolvidas através de funções (Function Based Views) ou Views

desenvolvidas através de classes (Class Based Views, ou apenas CBVs).

Utilizando funções, você basicamente vai definir uma função que:

● Recebe como parâmetro uma requisição (request).

● Realiza algum processamento.

● Retorna alguma informação, geralmente uma Resposta HTTP.

Já as Class Based Views são classes que herdam da classe View do

próprio Django (django.view.generic.base.View) e que agrupam diversas

funcionalidades para facilitar a vida do desenvolvedor.

CLASS BASED VIEWS
Nós podemos herdar e estender as funcionalidades das Class Based

Views para atender a lógica da nossa aplicação.

Para entender as diferenças das Funções e das Class Based Views, vamos

fazer um exemplo. Suponha você quer criar uma página com a listagem de

todos os funcionários. Utilizando funções, você poderia chegar a esse objetivo

da seguinte forma:

from django.shortcuts import render
from helloworld.models import Funcionario

def lista_funcionarios(request):
Primeiro, buscamos os funcionarios
funcionarios = Funcionario.objetos.all()

Incluímos no contexto
contexto = {'funcionarios': funcionarios}

Retornamos o template para listar os funcionários
return render(request, "templates/funcionarios.html", contexto)

Aqui, algumas colocações:

● Toda função que vai processar requisições no Django recebe como

parâmetro um objeto request contendo os dados da requisição.

● Contexto é o conjunto de dados que estarão disponíveis na página web

que será retornada ao usuário.

● A função django.shortcuts.render() é um atalho (shortcut) do próprio

Django que facilita a renderização de templates: ela recebe a própria

requisição, o diretório do template, o contexto da requisição e retorna o

template renderizado.

Já utilizando Class Based Views, podemos utilizar a ListView presente

em django.views.generic para listar todos os funcionários, da seguinte forma:

from django.views.generic import ListView
from helloworld.models import Funcionario

class ListaFuncionarios(ListView):
template_name = "templates/funcionarios.html"
model = Funcionario
context_object_name = "funcionarios"

Perceba que você não precisou descrever a lógica para buscar a lista de

funcionários?

É exatamente isso que as Views do Django proporcionam: elas facilitam

o desenvolvimento de Views para os casos mais comuns (como listagem,

exclusão, busca simples, atualização).

O caso comum para uma listagem de objetos é buscar todo o conjunto

de dados daquela entidade e mostrar no template, certo?! É exatamente isso

que a ListView faz!

Com isso, um objeto funcionarios estará disponível no seu template

para acesso. Dessa forma, podemos - por exemplo - criar uma tabela no nosso

template com os dados de todos os funcionários, assim:

<table>
<tbody>
{% for funcionario in funcionarios %}
<tr>
<td>{{ funcionario.nome }}</td>
<td>{{ funcionario.sobrenome }}</td>
<td>{{ funcionario.remuneracao }}</td>
<td>{{ funcionario.tempo_de_servico }}</td>
</tr>
{% endfor %}
</tbody>
</table>

Não se preocupe com a sintaxe do código acima! Vamos falar mais

sobre templates no próximo capítulo!

O Django tem uma diversidade enorme de Views, uma para cada

finalidade, por exemplo:

● CreateView: Para criar de objetos (É o Create do CRUD)

● DetailView: Traz os detalhes de um objeto (É o Retrieve do CRUD)

● UpdateView: Para atualização de um objeto (É o Update do CRUD)

● DeleteView: Para deletar objetos (É o Delete do CRUD)

E várias outras muito úteis!

Agora vamos tratar detalhes do tratamento de requisições através de

Funções. Em seguida, trataremos mais sobre as Class Based Views.

FUNÇÕES (FUNCTION BASED VIEWS)
Utilizar funções é a maneira mais explícita para tratar requisições no

Django (veremos que as Class Based Views podem ser um pouco mais

complexas pois muita coisa acontece implicitamente, por baixo dos panos).

Geralmente ao utilizar funções para tratar Requisições, o primeiro passo é

verificar qual foi o método HTTP utilizado: foi um GET? Foi um POST? Um

OPTION?

A partir dessa informação, processamos a Requisição da maneira

desejada. Vamos seguir o exemplo abaixo:

def cria_funcionario(request, pk):
Verificamos se o método POST
if request.method == 'POST':

form = FormularioDeCriacao(request.POST)

if form.is_valid():
form.save()
return HttpResponseRedirect(reverse('lista_funcionarios'))

Qualquer outro método: GET, OPTION, DELETE, etc...
else:

return render(request, "templates/form.html", {'form': form})

O fluxo é o seguinte:

● Primeiro, conforme mencionei, verificamos o método HTTP da requisição

no atributo method do objeto request.

● Depois instanciamos um form com os dados da requisição (no caso POST)

com FormularioDeCriacao(request.POST) na linha 4 (vamos falar mais

sobre Form mais para frente).

● Verificamos os campos do formulário com form.is_valid() na linha 6.

● Se tudo estiver OK, utilizamos o helper reverse() para traduzir a rota

'lista_funcionarios' para funcionários/. Utilizamos isso para

redirecionar o usuário para a view de listagem da aplicação.

● Se for qualquer outro método, apenas renderizamos a página novamente

com o método render() na linha 12.

Deu para perceber que o objeto request é essencial nas nossas Views,

né?

Separei aqui alguns atributos desse objeto que provavelmente serão os

mais utilizados por você:

● request.scheme: String representando o esquema (se veio por uma

conexão HTTP ou HTTPS).

● request.path: String com o caminho da página requisitada -

exemplo: /cursos/curso-de-python/detalhes.

● request.method: Conforme citamos, contém o método HTTP da requisição

(GET, POST, UPDATE, OPTION, etc).

● request.content_type: Representa o tipo MIME da requisição

- text/plain para texto plano, image/png para arquivos .PNG, por exemplo

- saiba mais clicando aqui.

● request.GET: Um dict contendo os parâmetros GET da requisição.

● request.POST: Um dict contendo os parâmetros do corpo de uma

requisição POST.

● request.FILES: Caso seja uma página de upload, contém os arquivos que

foram enviados.

● request.COOKIES: Dict contendo todos os COOKIES no formato de string.

Observação: Para saber mais sobre os campos do objeto request, dê uma

olhada na classe django.http.request.HttpRequest!

DEBUGANDO UMA REQUISIÇÃO NO PYCHARM
Algumas vezes, é interessante você ver o conjunto de dados que está

chegando do usuário para o Django. Outras vezes, precisamos verificar se está

tudo correto, se tudo está vindo como esperado ou se existem erros na

requisição.

https://developer.mozilla.org/pt-BR/docs/Web/HTTP/Basico_sobre_HTTP/MIME_types

Uma forma de vermos isso é debugando o código, isto é: pausando a

execução do código no momento em que a requisição chega no servidor e

analisando seus atributos, verificando se está tudo OK (ou não).

Se você utiliza o PyCharm, ou alguma outra IDE com debugger, pode

fazer os passos que eu vou descrever aqui (creio que em outra IDE, o processo

seja similar).

Por exemplo, vamos adicionar um breakpoint no método de uma View.

Para isso, clique duas vezes ao lado esquerdo da linha onde quer adicionar o

breakpoint. O resultado deve ser esse (linha 33, veja o círculo vermelho na

barra à esquerda, próximo ao contador das linhas):

Com isso, quando uma requisição for enviada do navegador do usuário e

que venha a passar nessa linha de código, o debugger entrará em ação,

mostrando as variáveis naquela linha de código.

Nesse exemplo, quando o debugger chegou nessa linha, é possível

inspecionar todos os valores atuais na Requisição, contexto, ambiente e mais:

A partir dessa visão, podemos verificar todos os atributos do objeto

request que chegou no servidor!

Confie em mim, isso ajuda MUITO a detectar erros!

Dito isso, agora vamos ver os detalhes do tratamento de requisições

através de Class Based Views.

AS PRINCIPAIS CLASS BASED VIEWS
Conforme expliquei anteriormente, as Class Based Views servem para

facilitar nossa vida, encapsulando funcionalidades comuns que todo

desenvolvedor sempre acaba implementando. Por exemplo, geralmente:

● Queremos que quando um usuário pedir a página inicial, seja mostrado

apenas uma página simples, com as opções possíveis.

● Queremos que a nossa página de listagem contenha a lista de todos os

funcionários cadastrados no banco de dados.

● Queremos uma página com um formulário contendo todos os campos

pré-preenchidos para atualização de dados de um funcionário.

● Queremos uma página de exclusão de funcionários.

● Queremos um formulário em branco para inclusão de um novo

funcionário.

Certo?!

Pois é, as CBVs - Class Based Views - facilitam isso para nós!

Temos basicamente duas formas para utilizar uma CBV:

● Primeiro, podemos utilizá-las diretamente no nosso URLConf (urls.py),

através do método estático as_view, dessa forma:

from django.urls import path
from django.views.generic import TemplateView

urlpatterns = [
path('', TemplateView.as_view(template_name="index.html")),

]

● E a segunda maneira, a mais utilizada e mais poderosa, é criar uma

Classe herdando da View desejada e sobrescrevendo os atributos e

métodos nessa subclasse criada, alterando sua lógica para atingir seus

objetivos.

Abaixo, veremos as Views mais utilizadas, e como podemos usá-las em

nosso projeto.

TemplateView

Por exemplo, para o primeiro caso (mostrar uma página simples),

podemos utilizar a TemplateView (acesse a documentação) para renderizar uma

página, da seguinte forma:

class IndexTemplateView(TemplateView):
template_name = "index.html"

Configurando as rotas da seguinte maneira:

from django.urls import path
from helloworld.views import IndexTemplateView

urlpatterns = [
path('', IndexTemplateView.as_view(), name='index'),

]

ListView

Já para o segundo caso, de listagem de funcionários, podemos utilizar a

ListView (acesse a documentação).

Nela, nós configuramos o Model que deve ser buscado (Funcionario no

nosso caso), e automaticamente faz a busca por todos os registros presentes no

banco de dados da entidade informada.

Por exemplo, podemos descrever a View da seguinte forma:

from django.views.generic.list import ListView
from helloworld.models import Funcionario

class FuncionarioListView(ListView):
template_name = "website/lista.html"
model = Funcionario
context_object_name = "funcionarios"

Utilizamos o atributo contexto_object_name para nomear a variável que

estará disponível no contexto do template HTML (caso não utilizado, o nome

padrão dado pelo Django será object).

E configuramos sua rota da seguinte maneira:

from django.urls import path
from helloworld.views import FuncionarioListView

https://docs.djangoproject.com/pt-br/4.0/ref/class-based-views/base/#templateview
https://docs.djangoproject.com/pt-br/4.0/ref/class-based-views/generic-display/#listview

urlpatterns = [
path('funcionarios/', FuncionarioListView.as_view(), name='lista_funcionarios')

]

Isso resultará em uma página lista.html contendo um objeto chamado

funcionarios com todos os Funcionários cadastrados, disponível para iteração.

Dica: É uma boa prática colocar o nome da View no formato: Model +

CBV base. Por exemplo: uma View que lista todos os Cursos, receberia o nome

de CursoListView (Model = Curso e CBV = ListView).

UpdateView

Para a atualização de registros podemos utilizar a UpdateView (veja a

documentação). Com ela, configuramos qual o Model (atributo model), quais

campos (atributo field) e qual o nome do template (atributo template_name), e

com isso temos um formulário para atualização de registros do modelo

definido.

No nosso caso:

from django.views.generic.edit import UpdateView
from helloworld.models import Funcionario

class FuncionarioUpdateView(UpdateView):
template_name = 'atualiza.html'
model = Funcionario
fields = [
'nome',
'sobrenome',
'cpf',
'tempo_de_servico',
'remuneracao'

]

Dica: Ao invés de listar todos os campos em fields em formato de lista

de strings, podemos utilizar fields = '__all__'. Dessa forma, o Django irá

buscar todos os campos para você!

Mas de onde o Django vai pegar o id do objeto a ser buscado?

O Django precisa ser informado do id ou slug para poder buscar o

objeto correto a ser atualizado. Podemos fazer isso de duas formas.

Primeiro, na configuração de rotas (urls.py):

https://docs.djangoproject.com/pt-br/4.0/ref/class-based-views/generic-editing/#updateview
https://docs.djangoproject.com/pt-br/4.0/ref/class-based-views/generic-editing/#updateview

from django.urls import path
from helloworld.views import FuncionarioUpdateView

urlpatterns = [
Utilizando o {id} para buscar o objeto
path(
'funcionario/<id>',
FuncionarioUpdateView.as_view(),
name='atualiza_funcionario'),

Utilizando o {slug} para buscar o objeto
path(
'funcionario/<slug>',
FuncionarioUpdateView.as_view(),
name='atualiza_funcionario'),

]

Mas o que é slug?

Slug é uma forma de gerar URLs mais legíveis a partir de dados já

existentes, transformando todas as letras para minúsculas e todos os espaços

para hífens.

Exemplo: podemos criar um campo slug utilizando o campo nome do

funcionário. Dessa forma, as URLs ficariam assim:

● /funcionario/vinicius

E não assim (utilizando o id na URL):

● /funcionario/175

A segunda forma de buscar o objeto é utilizando (ou sobrescrevendo) o

método get_object() da classe pai UpdateView.

A documentação deste método traz (traduzido):

Retorna o objeto que a View irá mostrar. Requer self.queryset e um

argumento pk ou slug no URLConf. Subclasses podem sobrescrever esse

método e retornar qualquer objeto.

Ou seja, o Django nos dá total liberdade de utilizarmos a convenção

(quando passamos os parâmetros na configuração da rota - URLConf) ou a

configuração (quando sobrescrevemos o método get_object()).

Basicamente, o método get_object() deve pegar o id ou slug da URL e

buscar no banco de dados o registro com aquele id.

Uma forma de sobrescrevermos esse método na View de listagem de

funcionários (FuncionarioListView) pode ser implementada da seguinte

maneira:

from django.views.generic.edit import UpdateView
from helloworld.models import Funcionario

class FuncionarioUpdateView(UpdateView):
template_name = "atualiza.html"
model = Funcionario
fields = '__all__'
context_object_name = 'funcionario'

def get_object(self, queryset=None):
funcionario = None

Os campos {pk} e {slug} estão presentes em self.kwargs
id = self.kwargs.get(self.pk_url_kwarg)
slug = self.kwargs.get(self.slug_url_kwarg)

if id is not None:
Busca o funcionario apartir do id
funcionario = Funcionario.objects.filter(id=id).first()

elif slug is not None:
Pega o campo slug do Model
campo_slug = self.get_slug_field()

Busca o funcionario apartir do slug
funcionario = Funcionario.objects.filter(**{campo_slug: slug}).first()

Retorna o objeto encontrado
return funcionário

Dessa forma, os dados do funcionário estarão disponíveis na variável

funcionario no template atualiza.html!

DeleteView

Para deletar funcionários, utilizamos a DeleteView (documentação).

Sua configuração é similar à UpdateView: nós devemos informar ao

Django qual objeto queremos excluir via URLConf ou através do método

get_object(). Precisamos configurar:

● O template que será renderizado.

● O model associado à essa view.

● O nome do objeto que estará disponível no template.

● A URL de retorno, caso haja sucesso na deleção do Funcionário.

https://docs.djangoproject.com/pt-br/4.0/ref/class-based-views/generic-editing/#deleteview

Com isso, a view pode ser codificada da seguinte forma:

class FuncionarioDeleteView(DeleteView):
template_name = "website/exclui.html"
model = Funcionario
context_object_name = 'funcionario'
success_url = reverse_lazy(
"website:lista_funcionarios"

)

O método reverse_lazy() serve para fazer a conversão de rotas (similar

ao reverse()) mas em um momento em que o URLConf ainda não foi

carregado pelo Django (que é o caso aqui).

Assim como na UpdateView, fazemos a configuração do id a ser buscado

no URLConf, da seguinte forma:

urlpatterns = [
path(
'funcionario/excluir/<pk>',
FuncionarioDeleteView.as_view(),
name='deleta_funcionario')

]

Assim, precisamos apenas fazer um template de confirmação da exclusão

do funcionário. Podemos fazer este template da seguinte forma:

<form method="post">
{% csrf_token %}

Você tem certeza que quer excluir o funcionário {{ funcionario.nome }}?

<button type="button">
Cancelar
</button>
<button>Excluir</button>
</form>

Algumas colocações:

● A tag do Django {% csrf_token %} é obrigatória em todos os forms pois

está relacionado à proteção que o Django provê ao CSRF - Cross Site

Request Forgery (tipo de ataque malicioso - saiba mais aqui).

● Não se preocupe com a sintaxe deste template, pois veremos mais sobre

ele no próximo capítulo!

https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)

CreateView

Nessa View, precisamos apenas dizer para o Django o model, o nome

do template, a classe do formulário (vamos tratar mais sobre Forms ali embaixo)

e a URL de retorno, caso haja sucesso na inclusão do Funcionário.

Podemos fazer isso assim:

from django.views.generic import CreateView

class FuncionarioCreateView(CreateView):
template_name = "website/cria.html"
model = Funcionario
form_class = InsereFuncionarioForm
success_url = reverse_lazy("website:lista_funcionarios")

O método reverse_lazy() traduz a View em URL. No nosso caso,

queremos que quando haja a inclusão do Funcionário, sejamos redirecionados

para a página de listagem, para podermos conferir que o Funcionário foi

realmente adicionado.

A configuração da rota no arquivo urls.py pode ser feita da seguinte

forma:

from django.urls import path
from helloworld.views import FuncionarioCreateView

urlpatterns = [
path(
'funcionario/cadastrar/',
FuncionarioCreateView.as_view()
name='cadastra_funcionario'),

]

Com isso, estará disponível no template configurado (website/cria.html,

no nosso caso), um objeto form contendo os campos do formulário para

criação do novo funcionário.

E agora trataremos da forma que o framework traz para construção de

Formulários em código HTML, os Forms do Django!

FORMS NO DJANGO
Podemos utilizar o formulário do Django nas páginas HTML de duas

formas. A primeira, mostra o formulário inteiro ”cru”, isto é, sem formatação e

sem estilo, conforme o Django nos entrega.

Podemos utilizá-lo no nosso template da seguinte forma:

<form method="post">
{% csrf_token %}

{{ form }}

<button type="submit">Cadastrar</button>
</form>

Observação: apesar de ser um Form, sua renderização não contém

as tags <form></form> - cabendo a nós incluí-los no template.

Já a segunda, é mais trabalhosa, pois temos que renderizar campo a

campo no template. Porém, nos dá um nível maior de customização. Podemos

renderizar cada campo do form dessa forma:

<form method="post">
{% csrf_token %}

<label for="{{ form.nome.id_for_label }}">Nome</label>
{{ form.nome }}

<label for="{{ form.sobrenome.id_for_label }}">Sobrenome</label>
{{ form.sobrenome }}

<label for="{{ form.cpf.id_for_label }}">CPF</label>
{{ form.cpf }}

<label for="{{ form.tempo_de_servico.id_for_label }}">Tempo de Serviço</label>
{{ form.tempo_de_servico }}

<label for="{{ form.remuneracao.id_for_label }}">Remuneração</label>
{{ form.remuneracao }}

<button type="submit">Cadastrar</button>
</form>

Nesse template:

● {{ form.campo.id_for_label }} traz o id da tag <input> para adicionar

à tag <label></label>.

● Utilizamos o {{ form.campo }} para renderizar apenas um campo do

formulário, e não ele inteiro.

Esse template será renderizado em uma página HTML no navegador do

usuário do nosso sistema. Após ser apresentado, o formulário será preenchido e

então submetido de volta ao nosso servidor. E agora vem a parte mais

complexa quando desenvolvemos Formulários utilizando o Django: o

tratamento de dados!

O tratamento dos dados enviados no formulários é uma tarefa que

pode ser bem complexa.

Considere um formulário com diversos campos e diversas regras de

validação: seu tratamento não é mais um processo simples.

Os Forms do Django são formas de descrever, em código Python, os

formulários das páginas HTML, simplificando e automatizando seu processo

de criação e validação.

O Django trata três partes distintas dos formulários:

● Preparação dos dados tornando-os prontos para renderização

● Criação de formulários HTML para os dados

● Recepção e processamento dos formulários enviados ao servidor

Basicamente, queremos uma forma de renderizar em nosso template o

seguinte código HTML:

<form action="/insere-funcionario/" method="post">
<label for="nome">Nome: </label>
<input id="nome" type="text" name="nome" value="">
<input type="submit" value="Enviar">

</form>

Que, ao ser submetido ao servidor, tenha seus campos de entrada

validados e, em caso de validação positiva – sem erros, seja inserido no banco de

dados e no caso de falha na validação, que possamos mostrar isso ao usuário.

No centro desse sistema de formulários do Django está a classe Form.

Nela, nós descrevemos os campos que estarão disponíveis no formulário

HTML. Por exemplo, podemos descrever o formulário acima da seguinte forma:

from django import forms

class InsereFuncionarioForm(forms.Form):
nome = forms.CharField(
label='Nome do Funcionário',
max_length=100

)

Neste formulário:

● Utilizamos a classe forms.CharField para descrever um campo de texto.

● O parâmetro label descreve um rótulo para esse campo.

● max_length descreve o tamanho máximo que esse input pode receber

(100 caracteres, no caso).

Veja os diversos tipos de campos disponíveis acessando aqui.

A classe forms.Form possui um método muito importante, chamado

is_valid(). Quando um formulário é submetido ao servidor, esse é um dos

métodos que irá realizar a validação dos campos do formulário.

Se tudo estiver OK, ele colocará os dados do formulário no atributo

cleaned_data (que pode ser acessado por você posteriormente para pegar

alguma informação - como o nome que foi inserido pelo usuário no campo

<input name='nome'>).

Como o processo de validação do Django é bem complexo, optei por

descrever aqui o essencial para começarmos a utilizá-lo. Para saber mais

sobre o funcionamento dos Forms, acesse a documentação aqui.

Vamos ver agora um exemplo mais complexo com um formulário de

inserção de um Funcionário com todos os campos. Para isso, crie o arquivo

forms.py no app website.

Em seguida, e consultando a documentação dos possíveis campos do

formulário, podemos descrever um Form de inserção assim:

from django import forms

class InsereFuncionarioForm(forms.Form)

nome = forms.CharField(
required=True,
max_length=255

)

sobrenome = forms.CharField(
required=True,
max_length=255

)

cpf = forms.CharField(
required=True,
max_length=14

)

tempo_de_servico = forms.IntegerField(
required=True

)

remuneracao = forms.DecimalField()

https://docs.djangoproject.com/pt-br/4.0/ref/forms/fields/
https://docs.djangoproject.com/pt-br/4.0/ref/forms/validation/
https://docs.djangoproject.com/pt-br/4.0/ref/forms/fields/

Affff, mas o Model e o Form são quase iguais… Terei que reescrever os

campos toda vez?

Claro que não, jovem! Por isso o Django nos presenteou com o incrível

ModelForm!

Com o ModelForm nós configuramos o Model que servirá como base do

Formulário; os campos que queremos a partir do atributo fields, e, através do

campo exclude, os campos que não queremos.

Para fazer essa configuração, utilizamos uma classe interna, chamada

Meta. Através dela, é possível configurar uma série de comportamentos do

ModelForm, como o modelo que será utilizado (atributo model), os campos

(através do atributo fields), a forma de ordenação (através do

atributo ordering) e mais (veja mais sobre Meta options).

Assim, nosso ModelForm, pode ser descrito da seguinte forma:

from django import forms

class InsereFuncionarioForm(forms.ModelForm):
class Meta:
Modelo base
model = Funcionario

Campos que estarão no form
fields = [
'nome',
'sobrenome',
'cpf',
'remuneracao'

]

Campos que não estarão no form
exclude = [
'tempo_de_servico'

]

Podemos utilizar apenas o campo fields, apenas o exclude ou os dois

juntos e mesmo ao utilizá-los, ainda podemos adicionar outros campos,

independente dos campos do Model.

O resultado será um formulário com todos os campos presentes

no fields, menos os campos do exclude mais os outros campos que

adicionarmos avulsamente.

Ficou confuso?

https://docs.djangoproject.com/pt-br/4.0/topics/db/models/#meta-options

Então vamos ver um exemplo que utiliza todos os atributos e ainda

adiciona novos campos ao formulário:

from django import forms

class InsereFuncionarioForm(forms.ModelForm)
chefe = forms.BooleanField(
label='Este Funcionário exerce função de Chefia?',
required=True,

)

biografia = forms.CharField(
label='Biografia',
required=False,
widget=forms.TextArea

)

class Meta:
Modelo base
model = Funcionario

Campos que estarão no form
fields = [
'nome',
'sobrenome',
'cpf',
'remuneracao'

]

Campos que não estarão no form
exclude = [
'tempo_de_servico'

]

Isso vai gerar um formulário com:

● Todos os campos contidos em fields

● Sem os campos contidos em exclude

● O campo forms.BooleanField como um checkbox (<input

type='checkbox' name='chefe' ...>)

● Biografia como uma área de texto (<textarea name='biografia'

...></textarea>)

Assim como é possível definir atributos nos modelos, os campos do

formulário também são customizáveis.

Veja que o campo biografia é do tipo CharField, portanto deveria ser

renderizado como um campo <input type='text' ...>'.

Contudo, nós modificamos o campo, através da configuração widget

com forms.TextArea. Assim, ele não mais será um simples input, mas será

renderizado como um <textarea></textarea> no nosso template!

Nós veremos mais sobre formulários no próximo capítulo, quando

formos renderizá-los em nossos templates.

Agora vamos tratar de um componente muito importante no

processamento de Requisições e formulação de Respostas da nossa aplicação:

os Middlewares.

MIDDLEWARES
Middlewares são trechos de códigos que podem ser executados antes ou

depois do processamento de Requisições/Respostas pelas Views da nossa

aplicação. É uma forma que nós temos para alterar como o Django processa

algum dado de entrada ou de saída.

Se você olhar no arquivo settings.py, nós já temos a lista

MIDDLEWARE com diversos middlewares pré-configurados:

MIDDLEWARE = [
'django.middleware.security.SecurityMiddleware',
'django.contrib.sessions.middleware.SessionMiddleware',
'django.middleware.common.CommonMiddleware',
'django.middleware.csrf.CsrfViewMiddleware',
'django.contrib.auth.middleware.AuthenticationMiddleware',
'django.contrib.messages.middleware.MessageMiddleware',
'django.middleware.clickjacking.XFrameOptionsMiddleware',

]

Por exemplo, temos o middleware AuthenticationMiddleware.

Ele é responsável por adicionar a variável user a todas as requisições.

Assim, você pode, por exemplo, mostrar o usuário logado no seu template:

Olá, {{ user.email }}

Você pode pesquisar e perceber que em lugar nenhum em nosso código

nós adicionamos a variável user ao Contexto das Requisições.

Não é muito comum, mas pode ser que você tenha que adicionar algum

comportamento antes de começar a tratar a Requisição ou depois de formar a

Resposta.

Portanto, veremos agora como podemos criar um middleware.

Um middleware é um método callable (que tem uma implementação do

método __call__) que recebe uma Requisição e retorna uma Resposta e,

assim como uma View, pode ser escrito como função ou como Classe.

Um exemplo de middleware escrito como função é:

def middleware_simples(get_response):

Código de inicialização do Middleware
def middleware(request):
Código a ser executado antes da View e
antes de outros middlewares serem executados

response = get_response(request)

Código a ser executado após a execução
da View que irá processar a requisição

return response

return middleware

E como Classe:

class MiddlewareSimples:
def __init__(self, get_response):
self.get_response = get_response

Código de inicialização do Middleware
def __call__(self, request):
Código a ser executado antes da View e
antes de outros middlewares serem executados

response = self.get_response(request)

Código a ser executado após a execução
da View que irá processar a requisição

return response

Cada Middleware é executado de maneira encadeada, do topo da

lista MIDDLEWARE para o fim. Sendo assim, a saída de um é a entrada do

próximo.

Já utilizando a construção do middleware via Classe, nós temos três

métodos importantes:

O MÉTODO process_view

Assinatura do método: process_view(request, func, args, kwargs)

Esse método é chamado logo antes do Django executar a View que vai

processar a Requisição e possui os seguintes parâmetros:

● request é um objeto da Classe HttpRequest, do próprio Django.

● func é a própria View que o Django está prestes a chamar, ao final da

cadeia de middlewares.

● args é a lista de parâmetros posicionais que serão passados à View.

● kwargs é o dict contendo os argumentos nomeados (keyword arguments)

que serão passados à View.

Esse método deve retornar None ou um objeto HttpResponse:

● Caso retorne None, o Django entenderá que deve continuar a cadeia

de Middlewares.

● Caso retorne HttpResponse, o Django entenderá que a resposta está

pronta para ser enviada de volta e não vai se preocupar em chamar o

resto da cadeia de Middlewares, nem a View que iria processar a

requisição.

O MÉTODO process_exception

Assinatura do método: process_exception(request, exception)

Esse método é chamado quando uma View lança uma exceção e deve

retornar ou None ou HttpResponse.

Caso retorne um objeto HttpResponse, o Django irá aplicar o

Middleware de resposta e o Middleware de template, retornando a requisição

ao navegador do usuário.

● request é o objeto HttpRequest

● exception é a exceção que foi lançada pela view.

O MÉTODO process_template_response

Assinatura do método: process_template_response(request, response)

Esse método é chamado logo após a View ter terminado sua execução

caso a resposta tenha uma chamada ao método render() indicando que a

reposta possui um template.

Possui os seguintes parâmetros:

● request é um objeto HttpRequest.

● response é o objeto TemplateResponse retornado pela view ou por outro

middleware.

Agora vamos criar um middleware um pouco mais complexo para

exemplificar o que foi dito aqui!

Vamos supor que queremos um middleware que filtre requisições e só

processe aquelas que venham de uma determinada lista de IP’s.

Esse middleware é muito útil quando temos, por exemplo, um conjunto

de servidores com IP fixo que vão se conectar entre si. Você poderia, por

exemplo, ter uma configuração no seu settings.py chamada ALLOWED_SERVERS

contendo a lista de IPs autorizados a se conectar ao seu serviço.

Para isso, precisamos abrir o cabeçalho das requisições que chegam no

nosso servidor e verificar se o IP de origem está autorizado. Como precisamos

dessa lógica antes da requisição chegar na View, vamos adicioná-la ao

método process_view, da seguinte forma:

class FiltraIPMiddleware:

def __init__(self, get_response=None):
self.get_response = get_response

def __call__(self, request):
response = self.get_response(request)
return response

def process_view(request, func, args, kwargs):
Lista de IPs autorizados
ips_autorizados = ['127.0.0.1']

IP do usuário
ip = request.META.get('REMOTE_ADDR')

Verifica se o IP do está na lista de IPs autorizados
if ip not in ips_autorizados:
Se usuário não autorizado > HTTP 403 (Não Autorizado)
return HttpResponseForbidden("IP não autorizado")

Se for autorizado, não fazemos nada
return None

Depois disso, precisamos registrar nosso middleware no arquivo de

configurações settings.py (na configuração MIDDLEWARE):

MIDDLEWARE = [
'django.middleware.security.SecurityMiddleware',
'django.contrib.sessions.middleware.SessionMiddleware',
'django.middleware.common.CommonMiddleware',
'django.middleware.csrf.CsrfViewMiddleware',
'django.contrib.auth.middleware.AuthenticationMiddleware',
'django.contrib.messages.middleware.MessageMiddleware',
'django.middleware.clickjacking.XFrameOptionsMiddleware',

Nosso Middleware
'helloworld.middlewares.FiltraIPMiddleware',

]

Agora, podemos testar seu funcionamento alterando a lista

ips_autorizados:

● Coloque ips_autorizados = ['127.0.0.1'] e tente acessar alguma URL

da aplicação: devemos conseguir acessar normalmente nossa aplicação,

pois como estamos executando o servidor localmente, nosso IP será

exatamente igual à 127.0.0.1 e, portanto, passaremos no teste condicional

que desenvolvemos no Middleware.

● Agora coloque ips_autorizados = [] e tente acessar alguma URL da

nossa aplicação: deve aparecer a mensagem “IP não autorizado”, pois

nosso IP (127.0.0.1) não está mais autorizado a acessar o servidor,

mostrando que nossa lógica funcionou corretamente!

CONCLUSÃO DO CAPÍTULO

Neste capítulo vimos vários conceitos importantes: vimos os tipos de

Views (funções e classes), os principais tipos de CBV (Class Based Views), como

mapear URLs para as views da aplicação através do URLConf, como utilizar os

poderosos Forms do Django, Middlewares e muito mais!

No próximo capítulo, veremos a camada da nossa aplicação, que é quem

faz a Interface com o Usuário, a Camada Template.

C A P Í T U L O 4

CAMADA TEMPLATE

O foco deste capítulo será a Camada Template da arquitetura do Django.

Neste capítulo vamos aprender a configurar, customizar e estender templates.

Também veremos como utilizar os filtros e tags que o próprio Django nos

disponibiliza, assim como criar tags e filtros customizados e Middlewares, que

são peças muito importantes no desenvolvimento de aplicações que utilizam o

Django!

Além disso, veremos como customizar o visual de páginas web com o

famoso Bootstrap, que dará uma identidade visual profissional às páginas da

nossa aplicação!

A Camada Template tem uma importância muito grande nas aplicações

Django, pois é ela quem dá cara ao nosso sistema, isto é, faz a interface com o

usuário. É nela que se encontra o código Python - responsável por renderizar

nossas páginas - e os arquivos HTML, CSS e Javascript - que darão vida à nossa

aplicação!

Contudo, vale ressaltar que as aplicações web vem sofrendo uma

mudança em sua arquitetura. Antigamente, era muito comum que todo código

da aplicação web vivesse apenas no Backend, como uma aplicação apenas -

com o servidor renderizando as páginas da aplicação. Hoje em dia, é muito

comum haver essa separação entre Backend e Frontend, com duas aplicações

distintas: o Backend servindo o Frontend, através de - geralmente - uma API,

enquanto o Frontend é desenvolvido como uma aplicação à parte, utilizando

frameworks consagrados como React, Angular ou Vue.js, que consumirão dados

do Backend.

Isso não quer dizer que a camada Template do Django não tem mais

utilização! Muitos projetos ainda a utilizam, pois ela é muito poderosa, mas seu

uso vem diminuindo.

ONDE ESTAMOS…
Primeiro, vamos relembrar onde estamos no fluxo de

Requisição/Resposta da nossa aplicação Django:

Agora, estamos na camada que faz a interface do nosso código

Python/Django com o usuário, interagindo, trocando informações e captando

dados de input.

Antes de mergulhar nessa Camada, vamos começar pelo começo,

respondendo à seguinte pergunta: o que é um Template?

DEFINIÇÃO DE TEMPLATE
Basicamente, um template é um arquivo base que pode ser

transformado em outro arquivo (um arquivo HTML, um CSS, um CSV, etc),

através do processo de interpolação de código.

Um template no Django contém:

● Variáveis que podem ser substituídas por valores, a partir do seu

processamento por uma Engine de Templates (núcleo ou “motor” de

templates). Para se usar variáveis em templates, usamos marcadores

iniciados com chaves, dessa forma: {{ variável }}.

● Tags que controlam a lógica de renderização do template. Usamos as

chaves e o símbolo de porcentagem, dessa forma: {% tag %}.

● Filtros que adicionam funcionalidades ao template. Usamos com o

caracter chamado “pipe”, dessa forma: {{ variável|filtro }}.

Entenda interpolação como o processo de se misturar códigos em

linguagens diferentes (por exemplo HTML com código Python) adicionando

funcionalidade, e tendo como saída apenas código em uma das duas

linguagens.

Não entendeu ainda?

Pense o seguinte: você talvez já saiba que HTML não tem estruturas de

repetição como o for ou while do Python, correto?

E se fosse possível criar um código que misturasse HTML com o for do

Python para criar uma estrutura de repetição dentro do código HTML, como o

código abaixo?!

<h1>Teste de interpolação</h1>

for dado in [1, 2, 3, 4]:
<p>{{ dado }}</p>

É exatamente isso que a interpolação faz (com uma pequena diferença

de sintaxe): adiciona funcionalidades de um código a outro!

Agora vamos à um exemplo com a real sintaxe de interpolação utilizando

a Engine de templates do Django!

{# base.html contém o template que usaremos como esqueleto #}
{% extends "base.html" %}

{% block conteudo %}
<h1>{{ section.title }}</h1>

{% for f in funcionarios %}
<h2>

{{ funcionario.nome|upper }}

</h2>
{% endfor %}
{% endblock %}

Agora vamos à explicação:

● Linha 1: Escrevemos comentário com a tag {# comentário #}. Eles serão

processados pelo Engine e não estarão presentes na página resultante.

● Linha 2: Utilizamos {% extends "base.html" %} para estender de um

template, ou seja, utilizá-lo como base, passando o caminho para ele.

● Linha 4: Podemos facilitar a organização do template, criando blocos

com {% block nome_do_bloco %}{% endblock %}.

● Linha 5: Podemos interpolar variáveis vindas do servidor em nosso

template utilizando {{ secao.titulo }} - dessa forma, estamos

acessando o atributo titulo do objeto secao (que deve estar no Contexto

da resposta).

● Linha 7: É possível iterar sobre objetos de uma lista através da tag

{% for objeto in lista %}{% endfor %}.

● Linha 10: Podemos utilizar filtros para aplicar alguma função à alguma

variável. Nesse exemplo, estamos aplicando o filtro upper - que transforma

todos os caracteres de uma string em maiúsculos - ao conteúdo de

funcionario.nome. Também é possível encadear filtros, por exemplo:
{{ funcionario.nome|upper|cut:" " }}

Para facilitar a manipulação de templates, os desenvolvedores do Django

criaram uma linguagem que contém todos esses elementos e a chamaram de

DTL - Django Template Language! Veremos mais dela neste capítulo!

Para começarmos a utilizar os templates do Django, é necessário

primeiro configurar sua utilização. E é isso que veremos agora!

CONFIGURAÇÃO
O nosso arquivo de configuração settings.py contém a seguinte

configuração, que define qual Engine (também chamada de Backend) fará o

processamento dos templates da nossa aplicação:

TEMPLATES = [
{
'BACKEND': 'django.template.backends.django.DjangoTemplates',
'DIRS': [],
'APP_DIRS': True,
'OPTIONS': {},
},

]

Mas você já se perguntou o que essa configuração quer dizer? Nela:

● BACKEND é o caminho para uma classe que implementa a API de

templates do Django.

● DIRS define uma lista de diretórios onde o Django deve procurar pelos

templates. A ordem da lista define a ordem de busca.

● APP_DIRS define se o Django deve procurar por templates dentro dos

diretórios dos apps instalados em INSTALLED_APPS.

● OPTIONS contém configurações específicas do BACKEND escolhido, ou seja,

dependendo do backend de templates utilizado, você poderá

configurá-lo utilizando parâmetros em OPTIONS.

Por ora, vamos utilizar as configurações padrão “de fábrica” pois elas já

nos atendem. Agora, vamos ver sobre a tal Django Template Language!

DJANGO TEMPLATE LANGUAGE (DTL)
A DTL é a linguagem padrão de templates do Django. Ela é simples,

porém poderosa. Dando uma olhada na sua documentação, podemos ver a

filosofia da DTL (traduzido):

Se você tem alguma experiência em programação, ou se você está acostumado

com linguagens que misturam código de programação diretamente no HTML,

você deve ter em mente que o sistema de templates do Django não é

https://docs.djangoproject.com/pt-br/4.0/ref/templates/language/

simplesmente código Python embutido no HTML. Isto é: o sistema de templates
foi desenhado para ser a apresentação, e não para conter lógica!

Se você vem de outra linguagem de programação deve ter tido contato

com o seguinte tipo de construção: código de programação adicionado

diretamente no código HTML (como PHP).

Isto é o terror dos designers (e não só deles)!

Ponha-se no lugar de um designer que não sabe nada sobre

programação. Agora imagina você tendo que dar manutenção nos estilos de

uma página LOTADA de código de programação?!

Complicado, hein?!

Por esse motivo que o template não deve conter lógica de negócio,

apenas lógica que altere a apresentação dos dados!

Agora, nada melhor para aprender sobre a DTL do que botando a mão na

massa e melhorando as páginas da nossa aplicação. E para deixar as páginas

visualmente agradáveis, vamos utilizar o famoso Bootstrap!

CONSTRUINDO A BASE DO TEMPLATE
Nosso template que servirá de esqueleto deve conter o código HTML que

irá se repetir em todas as páginas.

Devemos colocar nele os trechos de código mais comuns de páginas

HTML. Por exemplo, toda página HTML:

● Deve ter as tags: <html></html>, <head></head> e <body></body>.

● Deve ter os links para arquivos estáticos: <link></link> e

<script></script>.

Você pode fazer o download dos arquivos necessários para o nosso

projeto aqui (Bootstrap) e aqui (jQuery) - que é uma dependência do Bootstrap.

Faça isso para todos as bibliotecas externas que queira utilizar (ou utilize

um CDN - Content Delivery Network).

Ok! Agora, com os arquivos devidamente colocados na pasta /static/,

podemos começar com nosso template:

https://getbootstrap.com/
https://getbootstrap.com/docs/5.1/getting-started/download/
https://jquery.com/download/
https://pt.wikipedia.org/wiki/Rede_de_fornecimento_de_conte%C3%BAdo

<!DOCTYPE html>
<html>
{% load static %}
<head>
<title>
{% block title %}Gerenciador de Funcionários{% endblock %}

</title>

<!-- Estilos -->
<link rel="shortcut icon" type="image/png" href="{% static 'website/img/favicon.png' %}">
<link rel="stylesheet" href="{% static 'website/css/bootstrap.min.css' %}">
<link rel="stylesheet" href="{% static 'website/css/master.css' %}">

{% block styles %}{% endblock %}
</head>

<body>
<nav class="navbar navbar-expand-lg navbar-light bg-white">

<button class="navbar-toggler" type="button" data-toggle="collapse"
data-target="#conteudo-navbar" aria-controls="conteudo-navbar"
aria-expanded="false" aria-label="Ativar navegação">

</button>

<div class="collapse navbar-collapse" id="conteudo-navbar">
<ul class="navbar-nav mr-auto">
<li class="nav-item active">

Página Inicial

<li class="nav-item">

Funcionários

</div>

</nav>

{% block conteudo %}{% endblock %}

<script src="{% static 'website/js/jquery.min.js' %}"></script>
<script src="{% static 'website/js/bootstrap.min.js' %}"></script>

{% block scripts %}{% endblock %}

<script src="{% static 'website/js/scripts.js' %}"></script>
</body>
</html>

E vamos as explicações:

● <!DOCTYPE html> serve para informar ao browser do usuário que se trata

de uma página HTML5.

● Para que o Django possa carregar dinamicamente os arquivos estáticos

do site, utilizamos a tag static. Ela vai fazer a busca do arquivo que você

quer e fazer a conversão dos links corretamente. Para utilizá-la, é

necessário primeiro carregá-la e fazemos isso através do código

{% load <modulo> %}. Após carregá-la, utilizamos a tag da seguinte

maneira: {%static 'caminho/para/arquivo' %}, passando como

parâmetro a localização relativa à pasta /static/.

● Podemos definir quaisquer blocos no nosso template com a tag

{% block nome_do_bloco %}{% endblock %}. Fazemos isso para organizar

melhor as páginas que irão estender esse template. Podemos passar um

valor padrão dentro do bloco (igual está sendo utilizado na linha 6) -

dessa forma caso não seja definido nenhum valor no template filho - o

valor padrão é aplicado.

● Colocamos os arquivos necessários para o funcionamento do Bootstrap

nesse template, isto é: o jQuery, o CSS e o Javascript do Bootstrap.

● O link para outras páginas da nossa aplicação é feito utilizando-se a tag

{% url 'nome_da_view' parm1 parm2... %}. Dessa forma, deixamos que o

Django cuide da conversão para URLs válidas!

● O conjunto de tags <nav></nav> definem a barra superior de navegação

com os links para as páginas da aplicação. Esse também é um trecho de

código presente em todas as páginas, por isso, adicionamos ao

template. (Documentação da Navbar - Bootstrap)

E pronto! Temos um template base!

Agora, vamos customizar a tela principal da nossa aplicação:

a index.html!

PÁGINA INICIAL

Template: website/index.html

Nossa tela inicial tem o objetivo de apenas mostrar as opções disponíveis

ao usuário, que são:

● Link para a página de cadastro de novos Funcionários.

● Link para a página de listagem de Funcionários.

Primeiramente, precisamos dizer ao Django que queremos utilizar o

template que definimos acima como base.

Para isso, utilizamos a seguinte tag do Django, que serve para que

um template estenda de outro:

https://getbootstrap.com/docs/5.1/components/navbar/

{% extends “caminho/para/template” %}

Com isso, podemos fazer:

<!-- Estendemos do template base -->
{% extends "website/_layouts/base.html" %}

<!-- Bloco que define o <title></title> da nossa página -->
{% block title %}Página Inicial{% endblock %}

<!-- Bloco de conteúdo da nossa página -->
{% block conteudo %}
<div class="container">
<div class="row">
<div class="col-lg-6 col-md-6 col-sm-6 col-xs-12">
<div class="card">
<div class="card-body">
<h5 class="card-title">Cadastrar Funcionário</h5>
<p class="card-text">
Cadastre aqui um novo <code>Funcionário</code>.
</p>
<a href="{% url 'website:cadastra_funcionario' %}"
class="btn btn-primary">
Novo Funcionário

</div>
</div>
</div>
<div class="col-lg-6 col-md-6 col-sm-6 col-xs-12">
<div class="card">
<div class="card-body">
<h5 class="card-title">Lista de Funcionários</h5>
<p class="card-text">
Veja aqui a lista de <code>Funcionários</code> cadastrados.
</p>
<a href="{% url 'website:lista_funcionarios' %}"
class="btn btn-primary">
Vá para Lista

</div>
</div>
</div>
</div>
</div>
{% endblock %}

Nesse template:

● A classe container do Bootstrap (linha 9) serve para definir a área útil da

nossa página (para que nossa página fique centralizada e não fique

ocupando todo o comprimento da tela).

● As classes row e col-* fazem parte do sistema Grid do Bootstrap e nos

ajuda a tornar nossa página responsiva (que se adapta aos diversos tipos

e tamanhos de tela: celular, tablet, desktop, etc). É muito importante você

https://getbootstrap.com/docs/5.1/layout/containers/
https://getbootstrap.com/docs/5.1/layout/grid/

se atentar a esse detalhe para não comprometer a experiência do usuário,

caso ele acesse em aparelhos diferentes!

● As classes card* fazem parte do componente Card do Bootstrap.

● As classes btn e btn-primary (documentação) são usadas para dar visual

de botão à algum elemento.

Com isso, nossa Página Inicial - ou nossa Homepage - fica assim:

Top, hein?!

Agora vamos para a página de cadastro de Funcionários!

TEMPLATE DE CADASTRO DE FUNCIONÁRIOS

Template: website/cadastra-funcionario.html

Nesse template, mostraremos o formulário para cadastro de novos

funcionários ao usuário do sistema.

Lembra que definimos o Form do Django InsereFuncionarioForm no

capítulo passado?

Vamos utilizá-lo no template que criaremos em seguida, adicionando-o

na View FuncionarioCreateView. Dessa forma, esta View irá expor um objeto

form no nosso template para que possamos utilizá-lo.

Mas antes de seguir, vamos instalar uma biblioteca que vai nos auxiliar e

muito a renderizar os campos de input do nosso formulário: a Widget Tweaks!

https://getbootstrap.com/docs/5.1/components/card/
https://getbootstrap.com/docs/5.1/components/buttons/
https://github.com/jazzband/django-widget-tweaks/

Com ela, nós temos maior liberdade para customizar os campos de input

do nosso formulário (adicionando classes CSS e/ou atributos, por exemplo).

Para isso, primeiro nós a instalamos com:

pip install django-widget-tweaks

Depois disso, adicione-a à lista de apps instalados, no já conhecido

arquivo helloworld/settings.py:

INSTALLED_APPS = [
...
'widget_tweaks'

]

E, no template onde formos utilizá-lo, carregamos ela com a tag load, da

seguinte forma: {% load widget_tweaks %}!

E pronto, agora podemos utilizar a tag que irá renderizar os campos do

formulário, a render_field:

{% render_field nome_do_campo parametros %}

Para alterar como o input será renderizado, utilizamos os parâmetros da

tag. Dessa forma, podemos alterar o código HTML resultante.

Assim, podemos escrever nosso template de cadastro de Funcionários da

seguinte forma:

{% extends "website/_layouts/base.html" %}

{% load widget_tweaks %}

{% block title %}Cadastro de Funcionários{% endblock %}

{% block conteudo %}
<div class="container">
<div class="row">
<div
class="col-lg-12 col-md-12 col-sm-12 col-xs-12">
<div class="card">
<div class="card-body">
<h5 class="card-title">Cadastro de Funcionário</h5>
<p class="card-text">
Complete o formulário abaixo para cadastrar
um novo <code>Funcionário</code>.
</p>
<form method="post">
<!-- Não se esqueça dessa tag -->

{% csrf_token %}

<!-- Nome -->
<div class="input-group mb-3">
<div class="input-group-prepend">
Nome
</div>
{% render_field form.nome class+="form-control" %}
</div>

<!-- Sobrenome -->
<div class="input-group mb-3">
<div class="input-group-prepend">
Sobrenome
</div>
{% render_field form.sobrenome class+="form-control" %}
</div>

<!-- CPF -->
<div class="input-group mb-3">
<div class="input-group-prepend">
CPF
</div>
{% render_field form.cpf class+="form-control" %}
</div>

<!-- Tempo de Serviço -->
<div class="input-group mb-3">
<div class="input-group-prepend">

Tempo de Serviço

</div>
{% render_field form.tempo_de_servico class+="form-control" %}
</div>

<!-- Remuneração -->
<div class="input-group mb-3">
<div class="input-group-prepend">
Remuneração
</div>
{% render_field form.remuneracao class+="form-control" %}
</div>

<button class="btn btn-primary">Enviar</button>
</form>
</div>
</div>
</div>
</div>
</div>
{% endblock %}

Alguns pontos importante sobre o formulário acima:

● Utilizamos novamente as classes container, row, col-* e card* do

Bootstrap.

● Conforme mencionei no capítulo passado, devemos adicionar a tag

{% csrf_token %} para evitar ataques de Cross Site Request Forgery.

● As classes Input Group do Bootstrap input-group, input-group-prepend e

input-group-text servem para customizar o estilo dos elementos <input

/>.

● Para aplicar uma classe ao campo, utilizamos o símbolo de adição += no

atributo class: {% render_field form.campo class+='classe' %}

Observação: É possível adicionar a classe CSS form-control

diretamente no nosso Form InsereFuncionarioForm, da seguinte forma:

class InsereFuncionarioForm(forms.ModelForm):
nome = forms.CharField(
max_length=255,
widget=forms.TextInput(
attrs={
'class': "form-control"

}
)

)
...

Mas essa é uma péssima ideia porque bagunça código CSS dentro de

código Python. Não faça isso!

Nosso formulário deve ficar assim:

Agora, vamos desenvolver o template de listagem de Funcionários.

https://getbootstrap.com/docs/5.1/forms/input-group/

TEMPLATE DE LISTAGEM DE FUNCIONÁRIOS

Template: website/lista.html

Nesta página, nós queremos mostrar o conjunto de Funcionários

cadastrados no banco de dados e as ações que o usuário da aplicação pode

tomar, que são: atualizar os dados de um Funcionário ou excluí-lo.

Você se lembra da view FuncionarioListView? Ela é responsável por

buscar a lista de Funcionários e expor um objeto chamado funcionarios para

iteração no template.

Podemos construir nosso template da seguinte forma:

{% extends "website/_layouts/base.html" %}

{% block title %}Lista de Funcionários{% endblock %}

{% block conteudo %}
<div class="container">
<div class="row">
<div class="col-lg-12 col-md-12 col-sm-12 col-xs-12">
<div class="card">
<div class="card-body">
<h5 class="card-title">Lista de Funcionário</h5>

{% if funcionarios|length > 0 %}
<p class="card-text">
Aqui está a lista de <code>Funcionários</code>
cadastrados.
</p>

<table class="table">
<thead class="thead-dark">
<tr>
<th>ID</th>
<th>Nome</th>
<th>Sobrenome</th>
<th>Tempo de Serviço</th>
<th>Remuneração</th>
<th>Ações</th>
</tr>
</thead>

<tbody>
{% for f in funcionarios %}
<tr>
<td>{{ f.id }}</td>
<td>{{ f.nome }}</td>
<td>{{ f.sobrenome }}</td>
<td>{{ f.tempo_de_servico }}</td>
<td>{{ f.remuneracao }}</td>
<td>
<a href="{% url 'website:atualiza_funcionario' pk=f.id %}"

class="btn btn-info">
Atualizar

<a href="{% url 'website:deleta_funcionario' pk=f.id %}"
class="btn btn-outline-danger">
Excluir

</td>
</tr>
{% endfor %}
</tbody>
</table>
{% else %}
<div class="text-center mt-5 mb-5 jumbotron">
<h5>Nenhum <code>Funcionário</code> cadastrado ainda.</h5>
</div>
{% endif %}
<hr />
<div class="text-right">
<a class="btn btn-primary"
href="{% url 'website:cadastra_funcionario' %}">
Cadastrar Funcionário

</div>
</div>
</div>
</div>
</div>
</div>
{% endblock %}

Nesse template:

● Utilizamos as seguintes classes do Bootstrap para estilizar as tabelas:

table para estilizar a tabela e thead-dark para escurecer o cabeçalho.

● Na linha 13, utilizamos o filtro length para verificar se a lista de

funcionários está vazia. Se ela contiver dados, a tabela é mostrada. Se ela

estiver vazia, uma caixa com o texto “Nenhum Funcionário cadastrado

ainda” será mostrada.

● Utilizamos a tag {% for funcionario in funcionarios %} na linha 30

para iterar sobre a lista funcionarios.

● Nas linhas 39 e 46 fazemos o link para as páginas de atualização e

exclusão do usuário.

O resultado, sem Funcionários cadastrados, deve ser esse:

https://getbootstrap.com/docs/5.1/content/tables/

E com um Funcionário cadastrado:

Quando o usuário clicar em “Excluir”, ele será levado para a página

exclui.html e quando clicar em “Atualizar”, ele será levado para a página

atualiza.html.

Vamos agora construir a página de Atualização de Funcionários!

TEMPLATE DE ATUALIZAÇÃO DE FUNCIONÁRIOS

Template: website/atualiza.html

Nessa página, queremos que o usuário possa ver os dados atuais do

Funcionário e possa atualizá-los, conforme sua vontade. Para isso utilizamos a

View FuncionarioUpdateView que implementamos no capítulo passado.

Ela expõe um formulário com os campos do modelo preenchidos com os

dados atuais para que o usuário possa alterar.

Vamos utilizar novamente a biblioteca Widget Tweaks para facilitar a

renderização dos campos de input.

Veja no código abaixo como podemos fazer nosso template:

{% extends "website/_layouts/base.html" %}

{% load widget_tweaks %}

{% block title %}Atualização de Funcionário{% endblock %}

{% block conteudo %}
<div class="container">
<div class="row">
<div class="col-lg-12 col-md-12 col-sm-12 col-xs-12">
<div class="card">
<div class="card-body">
<h5 class="card-title">
Atualização de Dados do Funcionário
</h5>
<form method="post">
<!-- Não se esqueça dessa tag -->
{% csrf_token %}

<!-- Nome -->
<div class="input-group mb-3">
<div class="input-group-prepend">
Nome
</div>
{% render_field form.nome class+="form-control" %}
</div>

<!-- Sobrenome -->
<div class="input-group mb-3">
<div class="input-group-prepend">
Sobrenome
</div>
{% render_field form.sobrenome class+="form-control" %}
</div>

<!-- CPF -->
<div class="input-group mb-3">
<div class="input-group-prepend">
CPF
</div>
{% render_field form.cpf class+="form-control" %}
</div>

<!-- Tempo de Serviço -->
<div class="input-group mb-3">
<div class="input-group-prepend">
Tempo de Serviço
</div>
{% render_field form.tempo_de_servico class+="form-control" %}
</div>

<!-- Remuneração -->
<div class="input-group mb-3">
<div class="input-group-prepend">
Remuneração
</div>
{% render_field form.remuneracao class+="form-control" %}
</div>
<button class="btn btn-primary">Enviar</button>
</form>
</div>
</div>
</div>
</div>
</div>
{% endblock %}

Nesse template, não temos nada de novo.

Perceba que o código é similar ao template de adição de Funcionários,

com os campos sendo renderizados com a tag render_field.

Como nossa View herda de UpdateView, o objeto form já vem populado

com os dados do modelo em questão (aquele cujo id foi enviado ao clicar no

botão de edição).

Sua interface deve ficar similar à:

E por último, temos o template de exclusão de Funcionários.

TEMPLATE DE EXCLUSÃO DE FUNCIONÁRIOS

Template: website/exclui.html

A função dessa página é mostrar uma página de confirmação para o

usuário antes da exclusão de um Funcionário. Essa página vai concretizar a sua

exclusão.

A view que fizemos, a FuncionarioDeleteView, facilita bastante nossa vida.

Com ela, basta dispararmos uma requisição POST para a URL configurada, que o

Funcionário será deletado!

Dessa forma, nosso objetivo se resume à:

<!-- Estendemos do template base -->
{% extends "website/_layouts/base.html" %}

<!-- Bloco que define o <title></title> da nossa página -->
{% block title %}Página Inicial{% endblock %}

<!-- Bloco de conteúdo da nossa página -->
{% block conteudo %}
<div class="container mt-5">
<div class="card">

<div class="card-body">
<h5 class="card-title">Exclusão de Funcionário</h5>
<p class="card-text">
Você tem certeza que quer excluir o funcionário {{ funcionario.nome }}?
</p>
<form method="post">
{% csrf_token %}
<hr />
<div class="text-right">

Cancelar

<button class="btn btn-danger">Excluir</button>
</div>
</form>
</div>
</div>
</div>
{% endblock %}

Aqui, novamente nada de novo.

Apenas mostramos o formulário onde o usuário pode decidir excluir ou

não o Funcionário, que deve ficar assim:

Pronto! Com isso, temos todas as páginas do nosso projeto!

Você com certeza aprendeu bastante nessa caminhada! Mas calma que

ainda não terminou, ainda temos mais conteúdo para que você fique craque

em Django! Agora vamos ver como construir tags e filtros customizados!

TAGS E FILTROS CUSTOMIZADOS
Sabemos, até agora, que o Django possui uma grande variedade de filtros

e tags pré-configurados.

Contudo, é possível que, em alguma situação específica, o Django não te

ofereça o filtro ou tag necessários.

Por isso, ele previu a possibilidade de você construir seus próprios filtros

e tags! E já que ele dispõe dessa capacidade, vamos explorá-la construindo

uma tag que irá nos dizer o tempo atual formatado e um filtro que irá retornar

a primeira letra da string passada.

Mas primeiro, vamos começar com a configuração necessária!

CONFIGURAÇÃO

Os filtros e tags customizados residem em uma pasta específica da nossa

estrutura: a /templatetags.

Sendo assim, crie na raiz do app website essa pasta

(website/templatetags) e adicione:

● Um arquivo __init__.py em branco (para que o Django enxergue como

um pacote Python).

● O arquivo tempo_atual.py em branco referente à nossa tag.

● O arquivo primeira_letra.py em branco referente ao nosso filtro.

Nossa estrutura, portanto, deve ficar:

- website/
...
- templatetags/

- __init__.py
- tempo_atual.py
- primeira_letra.py

...

Para que o Django enxergue nossas tags e filtros é necessário que o app

onde eles estão instalados esteja configurada na lista INSTALLED_APPS do

settings.py (no nosso caso, website já está lá, portanto, nada a fazer aqui).

Também é necessário carregá-los com o {% load filtro/tag %}.

E já que temos que escolher um para começar: vamos começar

desenvolvendo o filtro.

Vamos chamá-lo de primeira_letra e, quando estiver pronto, iremos

utilizá-lo da seguinte maneira:

<p>{{ valor|primeira_letra }}</p>

FILTRO primeira_letra

Filtros customizados são basicamente funções que recebem um ou dois

argumentos. São eles:

● O valor do input.

● O valor do argumento - que pode ter um valor padrão ou não receber

nenhum valor.

Para ser um filtro válido, é necessário que o código dele contenha uma

variável chamada register que seja uma instância de template.Library (onde

todos os tags e filtros são registrados).

Isso define um filtro!

Outra questão importante são as Exceções. Como a engine de templates

do Django não provê tratamento de exceção: ao executar o código do filtro

qualquer exceção será exposta como uma exceção do próprio servidor.

Por isso, nosso filtro deve evitar lançar exceções e, ao invés disso, deve

retornar um valor padrão.

Para entender melhor, vamos ver um exemplo de filtro nativo do próprio

Django.

Abra o arquivo django/template/defaultfilter.py. Lá temos a definição de

diversos filtros que podemos utilizar em nossos templates (eu separei alguns e

vou explicar ali embaixo).

Lá temos o exemplo do filtro lower:

@register.filter(is_safe=True)
@stringfilter
def lower(value):
"""Convert a string into all lowercase."""
return value.lower()

Nele:

● @register.filter(is_safe=True) é um decorator utilizado para registrar

sua função como um filtro para o Django. Só assim o framework vai

enxergar seu código (saiba mais sobre decorators no post do Blog da

Python Academy: Domine Decorators em Python).

● @stringfilter é um decorator utilizado para dizer ao Django que seu

filtro espera uma string como argumento.

Agora que viu um filtro real do Django, vamos codificar e registrar nosso

próprio filtro!

Uma forma de pegarmos a primeira letra de uma string é através da

indexação, acessando o índice [0], da seguinte forma:

from django import template
from django.template.defaultfilters import stringfilter

register = template.Library()

@register.filter
@stringfilter
def primeira_letra(value):
return value[0]

Nesse código:

● O código register = template.Library() é necessário para pegarmos

uma instância da biblioteca de filtros do Django. Com ela, podemos

registrar nosso filtro com @register.filter.

● @register.filter e @stringfilter são os decorators que citei aqui em

cima.

E agora vamos testar, fazendo o carregamento e utilização em algum

template. Para isso, vamos alterar a tabela do template

website/lista.html para incluir nosso filtro da seguinte forma:

<!—- Primeiro, carregamos nosso filtro, logo após o extends -->
{% load primeira_letra %}
...
<table class="table">
<thead class="thead-dark">
<tr>
<th><!-- Retiramos o "ID" aqui --></th>
<th>Nome</th>
<th>Sobrenome</th>
<th>Tempo de Serviço</th>
<th>Remuneração</th>
<th class="text-center">Ações</th>
</tr>
</thead>
<tbody>
{% for f in funcionarios %}

https://pythonacademy.com.br/blog/domine-decorators-em-python/

<tr>
<!-- Aplicamos nosso filtro no atributo funcionario.nome -->
<td>{{ f.nome|primeira_letra }}</td>
<td>{{ f.nome }}</td>
<td>{{ f.sobrenome }}</td>
<td>{{ f.tempo_de_servico }}</td>
<td>{{ f.remuneracao }}</td>
<td class="text-center">
<a class="btn btn-primary"
href="{% url 'website:atualiza_funcionario' pk=f.id %}">
Atualizar

<a class="btn btn-danger"
href="{% url 'website:deleta_funcionario' pk=f.id %}">
Excluir

</td>
</tr>
{% endfor %}
</tbody>
</table>

O que resulta em:

E com isso, terminamos nosso primeiro filtro!

Agora vamos fazer nossa tag customizada: a tempo_atual!

TAG tempo_atual

De acordo com a documentação do Django, “tags são mais complexas

que filtros pois podem fazer qualquer coisa“.

Desenvolver uma tag pode ser algo bem trabalhoso, dependendo do que

você deseja fazer. Mas também pode ser simples. Como nossa tag vai apenas

mostrar o tempo atual, sua implementação não deve ser complexa. Para isso,

utilizaremos um “atalho” do Django: a simple_tag!

A simple_tag - como a própria tradução já diz: “simples tag” - é uma

ferramenta para construção de tags simples. Com ela, a criação de tags fica

similar à criação de filtros, que vimos na seção passada.

Primeiro, precisamos incluir uma instância de template.Library (para ter

acesso à biblioteca de filtros e tags do Django). Em seguida, utilizar

o decorator @register (para registrar nossa tag) e definir a implementação da

nossa função.

Para pegar o tempo atual, podemos utilizar o método now() da

biblioteca datetime. Como queremos formatar a data, também utilizamos o

método strftime(), passando como parâmetro a string formatada (%H é a hora,

%M são os minutos e %S são os segundos).

Podemos, então, definir nossa tag da seguinte forma:

import datetime
from django import template

register = template.Library()

@register.simple_tag
def tempo_atual():

return datetime.datetime.now().strftime('%H:%M:%S')

E para utilizá-la, a carregamos com {% load tempo_atual %} e em seguida

a utilizamos em nosso template com {% tempo_atual %}.

No nosso caso, vamos utilizar nossa tag no template-base que criamos: o

website/_layouts/base.html.

Vamos adicionar um novo item à barra de navegação (do lado direito), da

seguinte forma:

<body>
<!-- Navbar -->
<nav class="navbar navbar-expand-lg navbar-light bg-light">
...
<div class="collapse navbar-collapse" id="navbarSupportedContent">
<ul class="navbar-nav mr-auto">
<li class="nav-item active">

Página Inicial

<li class="nav-item">

Funcionários

<!-- Adicione a lista abaixo -->
<ul class="navbar-nav float-right">
<li class="nav-item">
<!-- Aqui está nosso filtro -->
Hora: {% tempo_atual %}

</div>
</nav>
...

O resultado deve ser:

Veja a hora do lado direito superior, na barra de navegação (Hora: 16:12:42)!

As possibilidades são infinitas!

Com isso, temos nosso filtro e tag customizados!

Agora vamos dar uma olhada nos filtros que estão presentes no próprio

Django: os Built-in Filters!

FILTROS DO DJANGO
É possível fazer muita coisa com os filtros que já vêm instalados no

próprio Django. Muitas vezes, é melhor você fazer algumas operações no

template do que fazê-las no backend (desde que sejam operações de

apresentação, apenas). Sempre verifique a viabilidade de um ou de outro para

facilitar sua vida!

Como a lista de built-in filters do Django é beeeeem extensa (veja a lista

completa aqui), vou listar aqui os que eu considero mais úteis!

Sem mais delongas, aí vai o primeiro: o capfirst!!!

FILTRO capfirst

O que faz: Torna o primeiro caracter do valor para maiúsculo.
Exemplo:

Entrada: valor = 'esse é um texto'.

Utilização:

{{ valor|capfirst }}

Saída:

Esse é um texto

FILTRO cut

O que faz: Remove todas as ocorrências do parâmetro no valor passado.

Exemplo:

Entrada: valor = 'Esse É Um Texto De Testes'

Utilização:

{{ valor|cut:" " }}

Saída:

https://docs.djangoproject.com/pt-br/4.0/ref/templates/builtins/#built-in-filter-reference
https://docs.djangoproject.com/pt-br/4.0/ref/templates/builtins/#built-in-filter-reference

EsseÉUmTextoDeTestes

FILTRO date

O que faz: Utilizado para formatar datas. Possui uma grande variedade de

configurações (veja aqui).

Exemplo:

Entrada: Objeto datetime.

Utilização:

{{ data|date:'d/m/Y' }}

Saída:

01/07/2018

FILTRO filesizeformat

O que faz: Transforma tamanhos de arquivos em valores legíveis.

Exemplo:

Entrada: valor = 123456789

Utilização:

{{ valor|filesizeformat }}

Saída:

117.7 MB

FILTRO floatformat

O que faz: Arredonda números com ponto flutuante com o número de casas

decimais passado por argumento.

Exemplo:

Entrada: valor = 14.25145

Utilização:

{{ valor|floatformat:"2" }}

https://docs.djangoproject.com/pt-br/4.0/ref/templates/builtins/#date

Saída:

14.25

FILTRO join

O que faz: Junta uma lista utilizando a string passada como argumento como

separador.

Exemplo:

Entrada: valor = ["Marcos", "João", "Luiz"]

Utilização:

{{ valor|join:" - " }}

Saída:

Marcos – João – Luiz

FILTRO length

O que faz: Retorna o comprimento de uma lista ou string. É muito utilizado

para saber se existem valores na lista (se length > 0, lista não está vazia).

Exemplo:

Entrada: valor = ['Marcos', 'João']

Utilização:

{% if valor|length > 0 %}
<p>Lista contém valores</p>

{% else %}
<p>Lista vazia</p>

{% endif %}

Saída:

<p>Lista contém valores</p>

FILTRO lower

O que faz: Transforma todos os caracteres de uma string em minúsculas.

Exemplo:

Entrada: valor = PaRaLeLePíPeDo

Utilização:

{{ valor|lower }}

Saída:

paralelepípedo

FILTRO pluralize

O que faz: Retorna um sufixo plural caso o número seja maior que 1.
Exemplo:

Entrada: valor = 12

Utilização:

Sua empresa tem {{ valor }} Funcionário{{ valor|pluralize:"s" }}

Saída:

Sua empresa tem 12 Funcionários

FILTRO upper

O que faz: Transforma em maísculo todos caracteres da string.
Exemplo:

Entrada: valor = texto de testes

Utilização:

{{ valor|upper }}

Saída:

TEXTO DE TESTES

FILTRO wordcount

O que faz: Retorna o número de palavras da string.
Exemplo:

Entrada: valor = Django é o melhor framework web

Utilização:

{{ valor|wordcount }}

Saída:

6

Código
O código completo desenvolvido nesse projeto está disponível no Github

da Python Academy. Clique aqui para acessá-lo e baixá-lo!

Para rodar o projeto, execute em seu terminal:

● pip install -r requirements.txt para instalar as dependências.

● python manage.py makemigrations para criar as Migrações.

● python manage.py migrate para efetivar as Migrações no banco de dados.

● python manage.py runserver para executar o servidor de testes do

Django.

● Acessar o seu navegador na página http://localhost:8000 (por padrão).

E pronto… Servidor rodando!

Conclusão do Capítulo
Neste capítulo vimos como configurar, customizar e estender templates,

como utilizar os filtros e tags do Django, como criar tags e filtros customizados

e um pouquinho de Bootstrap, para deixar as páginas bonitonas!

E AGORA?

https://github.com/pythonacademybr/HelloWorldDjango

F I N A L I Z A Ç Ã O

UM ATÉ BREVE…

Finalmente chegamos ao fim do nosso ebook! Mas, como você sabe, o

Django está em constante evolução. Por isso, é bom você se manter atualizado

nas novidades lendo, pesquisando e acompanhando o mundo do Django.

E deixo aqui novamente o convite para você conhecer a Jornada Python:

lá você vai aprender do básico ao avançado, com projetos completo e com

usabilidade real, dicas de carreira, certificado, suporte à dúvidas, além de dar

continuidade aos seus estudos de Django, com conteúdos em vídeo, Quizzes,

projetos mais complexos e muito mais!

Clique na imagem abaixo agora mesmo para conhecer a Jornada Python!

Te espero lá😉

https://bit.ly/3coubjF

