www.pythonacademy.com.br

django

DESENVOLVIMENTO WEB
COM PYTHON E DJANGO

Seu Guia definitivo para dominar o framework web mais

robusto do Python e conquistar sua vaga no

@ PYTHON

ACADEMY

PYTHON

ACADEMY

EBOOK

DESENVOLVIMENTO WEB
COM PYTHON E DJANGO

ANTES DE COMECARMOS...

Quer dominar a Linguagem Python e
fazer parte da parcela de programadores
mais bem paga do mercado de TI?

Se sim, conhega a Jornada Python e torne-se um especialista em Python e domine as
principais tecnologias do mercado - como o poderoso framework web Django - através
de projetos praticos e reais, mesmo que esteja comecando do absoluto zero.

=+ Suporte a duvidas
QR h 4 7 MédUlOS 4 Certificado de
+ de Python Concluséo

=+ Ebooks exclusivos

de conteudo

(e crescendo) a4 Atualizagdes futuras
sem custo adicional

Domine as principais tecnologias web do mercado...

e =0 E RO

PYTHON DJANGO HTML JAVASCRIPT BOOTSTRAP

E seja requisitado por recrutadores nacionais e internacionais!

‘@ CLIQUE AQUIE CONHEGA A JORNA-

django

P pYTHON

https://bit.ly/3coubjF

SUMARIO

CAPITULO 1: INTRODUCAO
FLUXO DE UMA REQUISICAO

CAPITULO 2: INSTALACAO
HELLO WORLD, DJANGO!

CAPITULO 3: CAMADA MODEL
ONDE ESTAMOS...
CAMADA MODEL
DB BROWSER FOR SQLITE
API DE ACESSO A DADOS

CAPITULO 4: CAMADA VIEW
ONDE ESTAMOS...
CAMADA VIEW
FUNCOES vs CLASS BASED VIEWS
CLASS BASED VIEWS
FUNCOES (FUNCTION BASED VIEWS)
DEBUGANDO UMA REQUISICAO NO PYCHARM
AS PRINCIPAIS CLASS BASED VIEWS
FORMS NO DJANGO
MIDDLEWARES

CAPITULO 5: CAMADA TEMPLATE
ONDE ESTAMOS...
DEFINICAO DE TEMPLATE
CONFIGURACAO
DIJANGO TEMPLATE LANGUAGE (DTL)
CONSTRUINDO A BASE DO TEMPLATE
TAGS E FILTROS CUSTOMIZADOS
FILTROS DO DIJANGO

© 0 o N

15
15
16
22
23

27
27
28
30

3]
33
34
36
42
48

53
54
55
57
57
58
72
79

INTRODUCAO

Django € um framework web de alto nivel, escrito em Python que

encoraja o desenvolvimento limpo de aplicagcdes web.

E antes de mergulharmos no Django, vamos entender primeiro sobre o
Desenvolvimento Web! No nicho de Desenvolvimento Web, o Pythonista tem
como objetivo o desenvolvimento de paginas Web, plataformas ou qualquer
outra aplicacao que seja executada em um navegador - como o Google Chrome
e o Firefox - com conexao a internet.

Dentro do Desenvolvimento Web existem 2 areas principais: o Frontend
e o Backend. O Diagrama abaixo exemplifica como os dois interagem e em

seguida explicamos cada um deles:

Website

Requisicoes

Bancos de Dados

Frontend

Diagrama Frontend x Backend

e O Frontend ¢é constituido por tudo aquilo que o Usuario final vé e
interage e € composto, basicamente, das paginas web que esse Usuario
tera acesso. Algumas tecnologias geralmente utilizadas sao: React,
Angular, HTML, CSS e Javascript.

e J3a o Backend, também chamado de Servidor, tem as seguintes
responsabilidades: processa as requisicdes enviadas pelo Frontend,
mantém as Regras de Negdcio do sistema e gerencia o0 acesso ao Banco

de Dados. E aqui que o Python esta presente!

Existem bibliotecas que auxiliam (e muito) no desenvolvimento de
aplicacdes web: os chamados frameworks! Um framework ¢ um conjunto de
ferramentas, técnicas e convencdes para facilitar o desenvolvimento de algum
tipo especifico de aplicacao. Sendo assim, temos diversos tipos de frameworks

diferentes, por exemplo:

e Temos Frameworks Frontend, que facilitam a criacdo de aplicacdes web
que sao executadas nos navegadores dos usuarios de um sistema.
Exemplos: React, Angular, Vue.js.

e Temos Frameworks Mobile, que facilitamm o desenvolvimento de
aplicacdées mobile. Exemplo: lonic e React Native.

e Temos Frameworks Web, que facilitam o desenvolvimento de aplicacdes
web, abstraindo detalhes de baixo nivel (como protocolos de rede, acesso
a banco de dados, tratamento de requisicdes HTTP). Exemplos: Ruby on
Rails (Ruby), Spring (Java), Express (Node.js).

E agora, voltando para o nosso querido Django.. Desenvolvido por
experientes desenvolvedores, Django toma conta da parte pesada do
desenvolvimento web, como tratamento de requisicdes, mapeamento
objeto-relacional, preparacao de respostas HTTP, para que, dessa forma, vocé
gaste seu esforco com aquilo que realmente interessa: as regras de negécio
da sua aplicacao!

Ele foi desenvolvido com uma preocupacao extra em seguranga, evitando
0S mais comuns tipos de ataques web, como Cross Site Scripting (XSS), Cross
Site Request Forgery (CSRF), SQL injection, entre outros.

E bastante escaldvel: Django foi desenvolvido para tirar vantagem da
maior quantidade de hardware possivel (desde que vocé queira). Django usa

https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/SQL_Injection

uma arquitetura “zero-compartilhamento”, o que significa que vocé pode
adicionar mais recursos em qualquer nivel: servidores de banco de dados,
cache e/ou servidores de aplicacao.

E utilizado por grandes empresas ao redor do mundo:

A udemy @ Pinterest (@) Instogran

DISQUS courserda (3 GoDaddy

E, para que vocé possa dominar esse framework como um todo,
utilizaremos uma abordagem bottom-up (de baixo para cima), isto é:

1. Primeiro, vamos comecar do comeco, instalando o Django!

2. Depois abordaremos a Camada de Modelos, que é onde fica centralizado
O acesso ao Banco de Dados e a modelagem das entidade da nossa
aplicacao - que chamamos de Modelos.

3. Em seguida veremos a Camada de Views, que é onde implementamos
as regras de negdcio da nossa aplicacao.

4. Por fim, veremos a Camada de Templates, que € a parte do framework
responsavel por renderizar paginas web, onde utilizaremmos HTML, CSS,
Javascript e a biblioteca de componentes Bootstrap.

Como disse anteriormente, o Django € um framework para construcao de
aplicacdées web em Python. Além disso, ele é estruturado em camadas, sendo
chamado de um Framework MTV - isto é: Model-Template-View - que sao
exatamente as camadas que veremos a seguir.

E para entender como o Django funciona, vamos fazer um Raio-X de uma
Requisicao, desde o navegador do usuario até o servidor que vai processa-la.

FLUXO DE UMA REQUISICAO

Para ajudar melhor, vamos analisar o fluxo de uma requisicao saindo do
navegador do usuario, passando para o servidor onde o Django esta sendo

executado, retornando novamente ao navegador.

TEMPLATE WEBSITE
VIEW | |
VIEWS E ROTEAMENTO
TEMPLATES MIDDLEWARES DE URLS
HTML css s —
—
: VIEWS.PY URLS.PY
MODEL ‘ l
y MODELOS
e
N ———— | '
MODELS.PY
BANCO DE :
DADOS

I Fluxo da Requisigéo
[0 Fluxo da Resposta

O Django ¢ dividido em trés camadas: a Camada de Modelos, a Camada
de Views e a Camada de Templates. Veremos cada uma nos Capitulos
seguintes. Mas agora vamos dar os primeiros passos com o Django, comecando
pela sua instalagao! Entdo ajeita sua cadeira, prepara o café e vamos nessa!

INSTALACAO

Primeiro, precisamos nos certificar que o Python e o PIP (gerenciador de
pacotes do Python) estao instalados corretamente.

Va no seu terminal ou prompt de comando e digite o comando python
--version. Deve ser aberto o terminal interativo do Python (se algo como bash:

command not found aparecer, é por que sua instalacao nao esta correta).

Agora, digite pip --version. A saida desse comando deve ser a versao

instalada do pip. Se ele nao estiver disponivel, faca o download do instalador

nesse link e execute o codigo.

Vamos executar esse projeto em um ambiente virtual utilizando o
virtualenv para que as dependéncias nao atrapalhem as que ja estao instaladas

Nno seu computador (para saber mais sobre o virtualenv, |eia esse post aqui

sobre desenvolvimento em ambientes virtuais).

Apds criarmos nosso ambiente virtual, instalamos o Django com:

pip install django

Para saber se a instalacdao esta correta, podemos abrir o terminal
interativo do Python (digitando pythonno seu terminal ou promptde

comandos) e executar:

import django

print(django.get_version())

A saida deve ser a versao do Django que acabou de ser instalada.

https://bootstrap.pypa.io/get-pip.py
https://bootstrap.pypa.io/get-pip.py
https://pythonacademy.com.br/blog/python-e-virtualenv-como-programar-em-ambientes-virtuais

HELLO WORLD, DJANGO!

Com tudo instalado corretamente, vamos agora fazer um projeto para

que vocé veja o Django em acao!

Nosso projeto € fazer um sistema de gerenciamento de Funcionarios. Ou
seja, vamos fazer uma aplicacdo onde serd possivel adicionar, listar, atualizar e
deletar Funcionarios.

Vamos comecar criando a estrutura de diretdrios e arquivos principais
para o funcionamento do Django. Para isso, o pessoal do Django fez um

comando muito bacana para nds: o django-admin.py.

Se sua instalacao estiver correta, esse comando ja foi adicionado ao seu
PATH!

Tente digitar django-admin --versionno seu terminal (se nao estiver

disponivel, tente django-admin.py --version).

Digitando apenas django-admin, é esperado que aparece a lista de

comandos disponiveis, similar a:

Available subcommands:

[django]
check
compilemessages
createcachetable
dbshell
diffsettings
dumpdata
flush
inspectdb
loaddata
makemessages
makemigrations
migrate
runserver
sendtestemail
shell
showmigrations
sqlflush
sqlmigrate
sqlsequencereset
squashmigrations
startapp
startproject
test
testserver

Por ora, estamos interessados no comando startproject que cria um

novo projeto com a estrutura de diretérios certinha para comegarmos a

desenvolver!

Executamos esse comando da seguinte forma:

django-admin.py startproject helloworld

Criando a seguinte estrutura de diretdrios:

/helloworld

- manage.py

__init__.py
asgi.py
settings.py
urls.py

wsgi.py

Explicando cada arquivo:

helloworld/asgi.py: Aqui configuramos a interface entre o servidor de
aplicacao e nossa aplicacao Django, com capacidades assincronas (nao se
preocupem com isso por enquanto), através do padrao ASGI.
helloworld/settings.py: Arquivo muito importante com as configuracoes
do nosso projeto, como configuracdées do banco de dados, aplicativos
instalados, configuracao de arquivos estaticos e muito mais.
helloworld/urls.py: Arquivo de configuracdo de rotas (ou URLConf). E nele
gue configuramos quem responde a qual URL.

helloworld/wsgi.py: Aqui configuramos a interface entre o servidor de
aplicacao e nossa aplicacao Django, através do padrao WSGI

manage.py: Arquivo gerado automaticamente pelo Django que expde
comandos importantes para manutencao da nossa aplicacao.

Para testar, vd para a pasta raiz do projeto e execute o comando python

manage.py runserver.

Depois, acesse seu browser no endereco http://localhost:8000.

A seguinte tela deve ser mostrada:

w-‘ The install worked successf

4

django View release notes for Django 4.0

()

The install worked successfully! Congratulations!

You are seeing this page because DEBUG=True is in your
settings file and you have not configured any URLs.

O Django Documentation .y Tutorial: A Polling App 2o Django Community
~ Topics, references, & how-ta's Get started with Django Connect, get help, or
contribute

Se ela aparecer, nossa configuracao esta correta e estamos prontos para

comecarmos a desenvolver nossa aplicagao!

Agora, vamos criar um app chamado website para separarmos os arquivos
de configuracao da nossa aplicagcao, que vao ficar na pasta/helloworld, dos

arquivos relacionados ao website.

De acordo com a documentagao, um app no Django é:

Uma aplicagdo Web que faz alguma coisa, por exemplo - um blog, um banco de
dados de registros publicos ou um aplicativo de pesquisa. Ja um projeto é uma
colegdo de configuragdes e apps para um website em particular.

Um projeto pode ter variosapps e um app pode estar presente em

diversos projetos.

A fim de criar um novoapp, o Django prové outro comando,

chamado django-admin.py startapp.

Ele nos ajuda a criar os arquivos e diretorios necessarios para tal objetivo.

Na raiz do projeto, execute:

django-admin.py startapp website

Agora, vamos criar algumas pastas para organizar a estrutura da nossa
aplicacao. Primeiro, crie a pasta templates dentro de website. Dentro dela, crie

uma pasta website e dentro dela, uma pasta chamada _layouts.

Crie também a pasta static dentro de website, para guardar os arquivos
estaticos (arquivos CSS, Javascript, imagens, fontes, etc). Dentro dela crie uma
pasta website (isto € feito por questdes de convencao do proprio framework).

Também dentro de static, crie: uma pasta css, uma pasta img e uma pasta js.

Assim, sua estrutura de diretdrios deve estar similar a:

Observagdo: Nos criamos uma pasta com o nome do app (website, no
caso) dentro das pastas static e templates para que o Django crie o
namespace do app. Dessa forma, o Django entende onde buscar os recursos

quando vocé precisar!

Para que o Django enxergue esse app que acabamos de criar, é
necessario adiciona-lo a lista de apps instalados do Django. Fazemos isso
atualizando a configuracao INSTALLED _APPS no arquivo de configuracao

helloworld/settings.py

Ela € uma lista e diz ao Django o conjunto de apps que devem ser

gerenciados No Nosso projeto.

E necesséario adicionar os apps da nossa aplicacdo a essa lista para que o

Django as enxergue. Para isso, procure por:

INSTALLED_APPS = [
‘django.contrib.admin’,
‘django.contrib.auth’,
'django.contrib.contenttypes’,
'django.contrib.sessions"’,
‘django.contrib.messages’,
‘django.contrib.staticfiles’,

E adicione website e helloworld, ficando assim:

INSTALLED_APPS = [
‘django.contrib.admin’,
'django.contrib.auth’,
'django.contrib.contenttypes’,
‘django.contrib.sessions’,
‘django.contrib.messages’,
‘django.contrib.staticfiles’,
"helloworld’,

'website’

Agora, vamos fazer algumas alteracdes na estrutura do projeto para

organizar e centralizar algumas configuracdes. Essa € uma configuragao pessoal

que eu sempre faco nos projetos que desenvolvo e que facilita a vida quando

desenvolvemos utilizando Django.

Primeiro, vamos passar o arquivo de modelos models.py de /website
para /helloworld, pois 0s arquivos comuns ao projeto vao ficar
centralizados no app helloworld (geralmente para projetos menores e
medianos temos apenas um arquivo models.py para o projeto todo. A
separagcao do arquivo de modelos geralmente sé ocorre em projetos
grandes).

Como nao temos mais o arquivo de modelos na pasta /website, podemos,
entao, excluir a pasta /migrations e o migrations.py, pois estes serao
gerados e gerenciados pelo app helloworld.

Crie um arquivo de rotas urls.py em /website. Vamos altera-lo
posteriormente.

Por fim, vocé deve estar com a estrutura de diretorios da seguinte forma:

v [l dev-web-django ~/Development/ p-django

hell rid

CONCLUSAO DO CAPITULO

Neste capitulo, vimos um pouco sobre o Django, suas principais
caracteristicas, sua estrutura de diretdérios e como comecar a desenvolver

utilizando-o!

Vimos as facilidades que o comando django-admin trazem e como

utiliza-lo para criar nosso projeto.

Também o utilizamos para criar apps, que sao estruturas modulares do
Nosso projeto, usados para organizar e separar funcdes especificas da nossa

aplicacao.

No préximo capitulo, vamos falar sobre a Camada Model do Django, que
€ onde residem as entidades do nosso sistema e toda a logica de acesso a

dados!

CAMADA MODEL

A Camada de Modelos tem uma funcao essencial na arquitetura das
aplicacdes desenvolvidas com o Django.

E nela que descrevemos o0s campos € comportamentos das entidades
gue irao compor nosso sistema e que serao traduzidas em Tabelas do nosso

Banco de Dados.

Também é nela que reside a logica de acesso aos dados da nossa
aplicacdao. Neste capitulo, vocé vera como o Django facilita nossa vida ao
manipular os dados do nosso sistema através da poderosa APl de Acesso a
Dados.

Mas primeiro, vamos nos situar!

ONDE ESTAMOS...

No primeiro capitulo, tratamos de conceitos introdutoérios do framework,

uma visao geral da sua arquitetura

Ja no segundo capitulo, fizemos a instalacao do Django e a criagcao do
famoso Hello World em Django.

Agora, vamos tratar da primeira camada do Dango, a Camada Model!

B Fluxo da Requisigdo
[0 Fluxo da Resposta

:IIIIIIIIIIIIIIIIIIIIIII u IIIIIIIIIIIIIIIIIIIIIIII.
- MODEL I]
u |
n n
- MODELOS -
n |
- —— o
] |
n |
u n
- BANCO DE MODELS.PY .
(] DADOS -
n |
[|
u |
n n
] |
u]
n n

B

Vamos mergulhar um pouco mais e conhecer a camada Model da

arquitetura MTV do Django (Model-Template-View).

Nela, vamos descrever, em forma de classes, as entidades do nosso
sistema, para que o resto (Template e View) facam sentido.

CAMADA MODEL

Vamos comecar pelo basico: pela definicao de modelo!

Um modelo - também chamado de entidade do sistema - ¢ a descricao

do dado que sera gerenciado pela sua aplicacao.

Ele contém os campos e comportamentos desses dados. No fim, cada
modelo vai ser transformado em uma tabela no banco de dados: processo que

é feito pelo préprio Django, portanto nao se preocupe!
No Django, um modelo tem basicamente duas caracteristicas:

e E uma classe que herda de django.db.models.Model
e Cada atributo representa um campo da tabela

Com isso, o Django gera automaticamente uma API| (Application
Programming Interface) de Acesso a Dados. Essa API| foi desenhada para
facilitar e muito nossa vida quando formos gerenciar (adicionar, excluir e

atualizar) os dados da nossa aplicacao.

Para entendermos melhor, vamos modelar a principal entidade do

sistema que vamos desenvolver: a entidade Funcionario!

Vamos supor que sua empresa esta desenvolvendo um sistema de
gerenciamento dos funcionarios e lhe foi dada a tarefa de modelar e

desenvolver o acesso aos dados da entidade Funcionario.

Pensando calmamente em sua estacao de trabalho enquanto seu chefe
Ihe cobra diversas metas e dizendo que o deadline do projeto foi adiantado em

duas semanas vVocé pensa nos seguintes atributos para tal classe:

e Nome

e Sobrenome

e CPF

e Tempo de servico

e Remuneracao

Agora, € necessario traduzir isso para cédigo Python para que o Django

possa entender.
No Django, os modelos sao descritos no arquivo models. py.

Ele ja foi criado no Capitulo anterior e esta presente na pasta

helloworld/models.py.

Nele, nOs iremos descrever cada atributo (nome, sobrenome, CPF e etc)

como um campo (ou Field) da nossa classe de Modelo.

Vamos chamar essa classe de Funcionario.

Seguindo as duas caracteristicas que apresentamos anteriormente
(herdar da classe Model e mapear os atributos da entidade através de campos),

podemos descrever nosso modelo da seguinte forma:

from django.db import models

class Funcionario(models.Model):
nome = models.CharField(
max_length=255,
null=False,
blank=False

)

sobrenome = models.CharField(
max_length=255,
null=False,
blank=False

)

cpf = models.CharField(
max_length=14,
null=False,
blank=False

)

tempo_de_servico = models.IntegerField(
default=0,
null=False,
blank=False

)

remuneracao = models.DecimalField(
max_digits=8,
decimal places=2,
null=False,
blank=False

)

objetos = models.Manager()

E agora vamos a explicacao deste modelo:

e Cada campo tem um tipo.

e O tipo CharField representa uma string.

e O tipoPositivelIntegerField representa um ndmero inteiro positivo.

e O tipoDecimalField representa um numero decimal com precisao fixa
(geralmente utilizamos para representar valores monetarios).

e Cada tipo tem um conjunto de propriedades, como: max_length para
delimitar o comprimento maximo da string; decimal_places para definir o
numero de casas decimais; entre outras (a documentacao de cada campo
e propriedade pode ser acessada aqui).

https://docs.djangoproject.com/en/4.0/ref/models/fields/

e O campo objetos = models.Manager() € utilizado para fazer operacdes de
busca e sera explicado em seguida!
e Observacao: nao precisamos configurar o identificador id - ele é

herdado automaticamente ao herdade de django.db.models.Model!

Toda vez que alteramos os modelos da nossa aplicacao Django é
necessario gerar uma Migragado que vai atualizar as tabelas do nosso banco de
dados.

Nos fazemos isso através de dois comandos muito importantes que o
Django traz para nos através do script managepy: o comando

makemigrations e o comando migrate.

O COMANDO makemigrations

O comando makemigrations analisa se foram feitas mudancas nos
modelos e, em caso positivo, cria novas migracdes (Migrations) para alterar a

estrutura do seu banco de dados, refletindo as alterac¢des feitas.

Vamos entender o que eu acabei de dizer. toda vez que vocé faz
uma alteragdo em seu modelo, é necessario que ela seja aplicada a estrutura
de tabelas do banco de dados.

A esse processo é dado o nome de Migragao! De acordo com a
documentacao do Django:

Migragdo é a forma do Django de propagar as alteragdes feitas em seu
modelo (adi¢do de um novo campo, dele¢do de um modelo, etc...) ao seu
esquema do banco de dados. Elas foram desenvolvidas para serem (na maioria
das vezes) automaticas, mas cabe a vocé saber a hora de fazé-las, executd-las
e resolver os problemas comuns que possam vir a acontecer.

Portanto, toda vez que vocé alterar um arquivo de modelo, nao se
esqueca de executar python manage.py makemigrations!

Ao executar esse comando, devemos ter a seguinte saida:

python manage.py makemigrations

Migrations for 'helloworld':
helloworld\migrations\@e01_initial.py
- Create model Funcionario

Observagcdo: Ao executar pela primeira vez, talvez seja necessaArio
executar o comando referenciando o app onde os modelos estdo definidos,
dessa forma: python manage.py makemigrations helloworld. Depois disso,
apenas python manage.py makemigrations deve bastar!

Agora, perceba que foi criado um diretdério chamado migrations dentro

da pasta helloworld.

Nele, vocé pode ver um arquivo chamado 0001_initial.py: ele contém a

Migration que possibilita a criacao do model Funcionario no banco de dados!

O COMANDO migrate

Quando executamos o makemigrations, o Django cria o banco de dados e
as migrations, mMas Nao as executa, isto é: nao aplica realmente as alteracdes no

banco de dados.

Para que o Django aplique essa Migracdes, sao necessarias trés coisas,
basicamente:

1. Que a configuracao da interface com o banco de dados esteja descrita no
arquivo settings.py

2. Que os Modelos e Migracdes estejam definidos para esse projeto.

3. Execucao docomando migrate

Se vocé criou o projeto com django-admin.py createproject helloworld,
a configuracao padrao foi aplicada. Procure pela configuracao DATABASES no

settings.py.

Ela deve ser a seguinte:

DATABASES = {
"default': {
"ENGINE': 'django.db.backends.sqlite3’,
"NAME': BASE_DIR / 'db.sqlite3’,
}
}

Por padrao, o Django utiliza um banco de dados leve chamado SOLite. Ja

Jja vamos falar mais sobre ele.

https://www.sqlite.org/index.html

Sobre os modelos e migrations, eles ja foram feitos com a definicao
do Funciondriono arquivo models.pye com a execugcao do comando

makemigrations.

Agora so¢ falta executar o comando migrate, para realmente alterar a
estrutura do Banco de Dados!

Para isso, vamos para a raiz do projeto (onde esta o script manage.py) e
executamos: python manage.py migrate. A saida deve ser:

$ python manage.py migrate

Operations to perform:
Apply all migrations: admin, auth, contenttypes, helloworld, sessions
Running migrations:
Applying contenttypes.0001_initial... OK
Applying auth.@001_initial... OK
Applying admin.@@01_initial... OK
Applying admin.@@02_logentry_ remove_auto_add...
Applying contenttypes.0002 remove_content_ty...
Applying auth.@002_alter_permission_name_max. ..
Applying auth.0003_alter_user_email max_leng...
Applying auth.0004_alter_user_username_opts...
Applying auth.@005_alter_user_last login_nul...
Applying auth.@006_require_contenttypes 0002...
Applying auth.@007_alter_validators_add_erro...
Applying auth.0008_alter_user_username_max_1l...
Applying auth.@009_alter_user_last_name_max_...
Applying helloworld.@001_initial... OK
Applying sessions.0001 initial... OK

Calma la... Haviamos definido apenas uma Migration e foram aplicadas

1511 Por qué???

Se lembra que a configuracao INSTALLED_APPS continha varios apps (e ndo

apenas os Nossos helloworld e website)?

Pois entao, cada app desses contém seus proprios modelos e migrations.
Por isso que ao executar o comando migrate o Django aplicou tudo que estava
aguardando ser aplicado. Sacou?!

Com a execucao do comando migrate, o Django ira executar diversos
comandos SQL para criar a estrutura necessaria para execucao da nossa
aplicacao. Uma delas € a tabela referente ao nosso modelo Funcionario, similar

a:

CREATE TABLE helloworld funcionario (
"id" serial NOT NULL PRIMARY KEY,
"nome" varchar(255) NOT NULL,
"sobrenome" varchar(255) NOT NULL,

)5

E agora veremos como podemos analisar o banco de dados que o Django
criou de forma visual, através da aplicacao DB Browser for SQLite!

DB BROWSER FOR SQLITE

Apresento-lhes uma ferramenta MUITO pratica que nos auxilia verificar a
estrutura do nosso Banco de Dados: o DB Browser for SQLite!

Com ele, podemos ver a estrutura do banco de dados, alterar dados em
tempo real, fazer queries (consultas), verificar se os dados foram efetivados no
banco e muito mais!

Cligue aqui para fazer o download e instalacao do software. Ao terminar a
instalacao, abra o DB Browser for SQLite. Vocé deve ter a seguinte tela:

https://sqlitebrowser.org/

DB Browser for SQLite - t X

File Edit View Help

@ New Database = Open Database] Write Changes ¢ Revert Changes
Database Structure Browse Data Edit Pragmas Execute SQL -
N N - e: | Te Exp e L
Name Type Schema
Type of data currently in cell: NULL
Remote B X
Identity v || 2
Name Commit Last modified Size
SQL Log Plot DB Schema Remote

Aqui, podemos clicar em “Abrir banco de dados” e procurar pelo banco

de dados do nosso projeto db.sqlite3 (ele esta na raiz do projeto).

Ao importar o banco de dados, teremos uma visao geral, mostrando
Tabelas, indices, Views e Triggers.

Para ver os dados de cada tabela, va para a aba “Navegar dados”, escolha
nossa tabela helloworld funcionario e..

Voila! O que temos? NADA @

Calma jovem.. Ainda ndo adicionamos nada! Ja ja vamos criar

as Views e Templates e popular esse BD!)

API DE ACESSO A DADOS

Com nossa classe Funcionario modelada e ja instalada no Banco de
Dados, vamos agora ver a API de acesso a dados provida pelo Django que vai
facilitar muito a nossa vida!

Vamos testar a adicao de um novo funcionario utilizando o shell do
Django. Para isso, digite o comando:

python manage.py shell

O shell do Django € muito util para testar trechos de codigo sem ter
que executar o servidor inteiro!

Para adicionar um novo funcionario, basta criar uma instancia do seu
modelo e chamar o método save() (ndo desenvolvemos esse meétodo, mas
lembra que nosso modelo herdou de Models? Pois &, € de Ia que ele veio).

Podemos fazer isso com o codigo abaixo (no shell do Django):

from helloworld.models import Funcionario

funcionario = Funcionario(
nome="'Marcos"',
sobrenome="da Silva',
cpf="'015.458.895-50",
tempo_de_servico=5,
remuneracao=10500.00

)

funcionario.save()

E... Pronto!
O Funcionario Marcos da Silva sera salvo no seu banco!
NADA de codigo SQL e queries enormes!!! Tudo simples! Tudo limpo!

E importante ressaltar que antes da conclusdo com sucesso do método
.save(), o registro nao possui um identificador Gnico (também chamado de ID
ou PK - Primary Key). Apos a chamada ao método .save() podemos visualizar
o ID do registro da seguinte forma:

print(funcionario.id)

Saida deve ser: 1

A API de busca de dados é ainda mais completa! Nela, vocé constroi
sua query a nivel de objeto!

Mas como assim?!

Por exemplo, para buscar todos os Funcionarios, abra o shell do Django e
digite:

funcionarios = Funcionario.objetos.all()

Se lembra do tal Manager que falamos |a em cima? Entao, um Manager € a

interface na qual as operac¢des de busca sao definidas para o seu modelo.

Ou seja, através do campo objetos podemos fazer queries incriveis sem
uma linha de SQL!

Exemplo de um query um pouco mais complexa:

Busque todos os funciondrios que tenham mais de 3 anos de servigo, que
ganhem menos de R$ 5.000,00 de remuneracdo e que ndo tenham “Marcos”
no nome.

Podemos atingir esse objetivo com:

funcionarios = Funcionario.objetos
.exclude(nome="Marcos")
.filter(tempo_de_servico_ gt=3)
.filter(remuneracao__1t=5000.00)
.all()

O método exclude() retira linhas da pesquisa (N0 NOsSsSO caso, vai excluir
0s registros que contenham “Marcos” no nome) e filter() filtra a busca, de
acordo com os filtros que passamos!

No exemplo, para filtrar por maior que, adicionamos a string __ gt (gt do
inglés greater than. Em portugués “maior que”) e 1t (It do inglés less than.
Em portugués, “menor que”) aos campos.

O método .all() ao final da query serve para retornar todas as linhas do
banco que cumpram os filtros da nossa busca (também temos o first() que
retorna apenas o primeiro registro, o last(), que retorna o ultimo, entre

outros).

Agora, vamos ver como é simples excluir um Funcionario:

Primeiro, encontramos o Funciondrio que desejamos deletar
funcionario = Funcionario.objetos.get(id=1)

Agora, o deletamos!
funcionario.delete()

Aqui temos um método novo, o .get()! Com ele, podemos passar o
identificador unico do registro que queremos encontrar. Em seguida,
podemos chamar o método .delete() para deletar um registro do banco de

dados!

Simples, né?!

A atualizacao de campos também €& extremamente simples, bastando
buscar a instancia desejada, alterar o campo e salva-lo novamente!

Por exemplo: o funcionario deid = 13 se casou e alterou seu nome de
Marcos da Silva para Marcos da Silva Albuquerque.

Podemos fazer essa alteracao no banco de dados da seguinte forma:

Primeiro, buscamos o funciondrio desejado
funcionario = Funcionario.objetos.get(id=13)

Alteramos seu sobrenome
funcionario.sobrenome = f"{funcionario.sobrenome} Albuquerque"

Salvamos as alteracoes
funcionario.save()

CONCLUSAO DO CAPITULO

Com isso, concluimos a construcao do modelo da nossa aplicagao!

Criamos o banco de dados, vimos como visualizar os dados com o DB
Browser for SQLite e como a API de acesso a dados do Django € simples e
poderosal

No préximo capitulo, vamos aprender sobre a Camada View e como
adicionamos logica de negdcio a nossa aplicacao Django!

CAMADA VIEW

Neste capitulo vamos abordar a Camada View do Django, que é onde
descrevemos as logicas de negdcio da nossa aplicagcao!

E nesta camada que vamos desenvolver os métodos que irdo:

e Processar as Requisicoes HTTP que chegarem a nossa aplicagao;
e Formular Respostas HTTP; e

e Envia-las de volta ao usuario.

Vamos aprender o conceito das poderosas Views do Django, aprender a
diferenca entre Function Based Views (FBV) e Class Based Views (CBYV),
como utilizar os Forms do Django, aprender o que sao Middlewares, como

desenvolvé-los e muito mais.

Entdo vamos nessa, que esse capitulo esta repleto de cédigo e muito
conteudo!

Mas antes, vocé ja sabe: vamos nos situar para saber onde estamos,

dentro do ciclo de vida de uma Requisicao HTTP dentro do Framework Django.

ONDE ESTAMOS...

Primmeiramente, vamos nos situar:

SN NN NN NN NN NN EENNEEEEAEEEEEEEEEEEEEEE EEEEEEEEN,
= VIEW] -
]
- n
- u
- u
- VIEWS E ROTEAMENTO =
- TEMPLATES MIDDLEWARES DE URLS]
: HTML CSS s Y :
—— -
] —
L] VIEWS.PY URLS.PY :
. -
-]
- =
- u
- n
- 9

CAMADA VIEW

A principal responsabilidade desta camada é a de processar as
requisicoes vindas dos usuarios, formar uma resposta e envia-la de volta ao
usuario. E € nesta camada que residem aslégicas de negécio da nossa

aplicacao.

Essa camada deve: recepcionar, processar e responder!

Na etapa de recepgao das Requisicdes, um dos primeiros passos €
determinar qual trecho de coédigo a processara, através do que chamamos de
roteamento de URLS!

A partir da URL que o usuario quiser acessar (/funcionarios, por
exemplo), o Django ira rotear a Requisi¢cao para quem ira trata-la. Mas primeiro,
o Django precisa ser informado sobre qual cédigo processa qual rota. Fazemos
isso no chamado URLconfe damos o nome a esse arquivo, por convencao,

de urls.py.

Geralmente, temos um arquivo de rotas por app do Django. Por isso
criamos o arquivo urls.py dentro da pasta /website, |& nos capitulos iniciais
deste Ebook. Como o app helloworld é o nucleo da nossa aplicacao, ele faz o

papel de centralizador de rotas, isto é:

e Primeiro, a Requisicao cai no arquivo /helloworld/urls.py e é roteada
para o app correspondente.
e Em seguida, o URLConf do app (/website/urls.py, no Nnosso caso) vai

rotear a Requisicao para a View que ira processa-la.

Traduzindo em cdédigo, fazemos isso da seguinte, alterando o arquivo, o

arquivo helloworld/urls.py:

from django.urls.conf import include
from django.contrib import admin
from django.urls import path

urlpatterns = [
Inclui as URLs do app website
path('', include('website.urls', namespace='website')),

Interface administrativa
path('admin/', admin.site.urls),

]

Assim, o Django ira tentar fazer o match (casamento) de URLs primeiro
no arquivo de URLs do app Website (website/urls.py) depois no URLConf da
plataforma administrativa. Se nao houver o casamento de URLs entre o que
esta configurado nas rotas do Django e o que 0 usuario quer acessar, um erro
HTTP 404 NOT FOUND sera retornado ao usuario, significando que a pagina - ou

rota - nao foi encontrada.

Pode parecer complicado, mas ali embaixo, guando tratarmos mais sobre
Views, vai fazer mais sentido. A configuracao do URLConf é bem simples, basta

definirmos qual funcao ou View ird processar requisicbes de tal URL. Por

exemplo, queremos que:

Quando um usudrio tentar acessar a URL raiz da nossa aplicagdo /, o Django
chame a fung¢do index() para processar tal requisigdo.

Vejamos como poderiamos configurar esse roteamento N0 NOsso arquivo
de rotas urls.py:

Importamos a fung¢do index() definida no arquivo views.py
from . import views

app_name = 'website’

urlpatterns contém a Lista de roteamentos de URLs
urlpatterns = [

GET /

path('', views.index, name='index'),

]

O atributo app _name = 'website' define o namespace do app website
(lembre-se do décimo nono Zen do Python: namespaces sao uma boa ideia!

- cligue aqui para saber mais sobre o Zen do Python).

A funcao auxiliar path() tem a seguinte assinatura:

path(rota, view, kwargs=None, name='")

Destrinchando cada parametro:

e rota:string contendo a rota (URL).

e view: a funcao (ou classe) que ira tratar essa rota.

e kwargs: utilizado para passar dados adicionais a funcao ou método que ira
tratar a requisicao.

e name: nome da rota. O Django utiliza o app_name mais o0 nome da rota para
nomear a URL. Por exemplo, no nosso caso, podemos chamar a rota raiz
'/' com 'website:index' (app_site = website e a rota raiz = index). Veja
mais sobre padroes de formato de URL.

FUNCOES vs CLASS BASED VIEWS

Com as URLs corretamente configuradas, o Django ira rotear Requisicdes

para onde vocé definiu. No caso acima, sua requisicao ira ser processada pela

funcao views.index().

https://pythonacademy.com.br/zen-of-python
https://docs.djangoproject.com/pt-br/4.0/topics/http/urls/#naming-url-patterns

Podemos tratar as requisicbes de duas formas: através de Views
desenvolvidas através de fungdes (Function Based Views) ou Views
desenvolvidas através de classes (Class Based Views, ou apenas CBVs).

Utilizando fungodes, vocé basicamente vai definir uma funcao que:

e Recebe como parametro uma requisicao (request).
e Realiza algum processamento.
e Retorna alguma informacao, geralmente uma Resposta HTTP.

J4 as Class Based Views sdo classes que herdam da classe View do
proprio Django (django.view.generic.base.View) e que agrupam diversas
funcionalidades para facilitar a vida do desenvolvedor.

CLASS BASED VIEWS

Nos podemos herdar e estender as funcionalidades das Class Based
Views para atender a l6gica da nossa aplicagao.

Para entender as diferencas das Funcdes e das Class Based Views, vamos
fazer um exemplo. Suponha vocé quer criar uma pagina com a listagem de
todos os funciondrios. Utilizando fungoes, vocé poderia chegar a esse objetivo
da seguinte forma:

from django.shortcuts import render
from helloworld.models import Funcionario

def lista_funcionarios(request):
Primeiro, buscamos os funcionarios
funcionarios = Funcionario.objetos.all()

Incluimos no contexto
contexto = {'funcionarios': funcionarios}

Retornamos o template para Listar os funciondrios
return render(request, "templates/funcionarios.html", contexto)

Aqui, algumas colocacdes:

e Toda funcao que vai processar requisicbes no Django recebe como
parametro um objeto request contendo os dados da requisi¢cao.

e Contexto € o conjunto de dados que estarao disponiveis na pagina web
gue sera retornada ao usuario.

e A funcdao django.shortcuts.render() € um atalho (shortcut) do proprio
Django que facilita a renderizacao de templates: ela recebe a propria
requisicao, o diretdrio do template, o contexto da requisi¢cao e retorna o
template renderizado.

Ja utilizando Class Based Views, podemos utilizar a ListView presente

em django.views.generic para listar todos os funcionarios, da seguinte forma:

from django.views.generic import ListView
from helloworld.models import Funcionario

class ListaFuncionarios(ListView):

template_name = "templates/funcionarios.html”
model = Funcionario
context_object_name = "funcionarios"

Perceba que vocé ndo precisou descrever a I6gica para buscar a lista de
funcionarios?

E exatamente isso que as Views do Django proporcionam: elas facilitam
o desenvolvimento de Views para o0s casos mais comuns (como listagem,

exclusao, busca simples, atualizacao).

O caso comum para uma listagem de objetos € buscar todo o conjunto
de dados daquela entidade e mostrar no template, certo?! E exatamente isso

que a ListView faz!

Com isso, um objeto funcionarios estara disponivel no seu template
para acesso. Dessa forma, podemos - por exemplo - criar uma tabela no nosso

template com os dados de todos os funcionarios, assim:

<table>
<tbody>
{% for funcionario in funcionarios %}
<tr>
<td>{{ funcionario.nome }}</td>
<td>{{ funcionario.sobrenome }}</td>
<td>{{ funcionario.remuneracao }}</td>
<td>{{ funcionario.tempo_de_servico }}</td>
</tr>
{% endfor %}
</tbody>
</table>

N&o se preocupe com a sintaxe do codigo acima! Vamos falar mais

sobre templates no proximo capitulo!

O Django tem uma diversidade enorme de Views, uma para cada
finalidade, por exemplo:

e CreateView: Para criar de objetos (E o Create do CRUD)
e DetailView: Traz os detalhes de um objeto (E o Retrieve do CRUD)
e UpdateView: Para atualizacdo de um objeto (E o Update do CRUD)
e DeleteView: Para deletar objetos (E o Delete do CRUD)

E varias outras muito Uteis!

Agora vamos tratar detalhes do tratamento de requisicdes atraves de

Funcdes. Em seguida, trataremos mais sobre as Class Based Views.

FUNCOES (FUNCTION BASED VIEWS)

Utilizar funcdes € a maneira mais explicita para tratar requisicées no
Django (veremos que as Class Based Views podem ser um pouco mais
complexas pois muita coisa acontece implicitamente, por baixo dos panos).

Geralmente ao utilizar funcdes para tratar Requisicdes, o primeiro passo &
verificar qual foi o método HTTP utilizado: foi um GET? Foi um POST? Um
OPTION?

A partir dessa informacdo, processamos a Requisicao da maneira

desejada. Vamos seguir o exemplo abaixo:

def cria_funcionario(request, pk):
Verificamos se o método POST
if request.method == 'POST':
form = FormularioDeCriacao(request.POST)

if form.is_valid():
form.save()
return HttpResponseRedirect(reverse('lista_funcionarios'))

Qualquer outro método: GET, OPTION, DELETE, etc..
else:
return render(request, "templates/form.html", {'form': form})

O fluxo € o seguinte:

e Primeiro, conforme mencionei, verificamos o método HTTP da requisicao
no atributo method do objeto request.

e Depois instanciamos um form com o0s dados da requisi¢ao (no caso POST)
com FormularioDeCriacao(request.POST) na linha 4 (vamos falar mais

sobre Form mais para frente).

e Verificamos os campos do formulario com form.is _valid() nalinha 6.

e Se tudo estiver OK, utilizamos o helper reverse() para traduzir a rota
'lista_funcionarios' para funcionarios/. Utilizamos isso para
redirecionar o usuario para a view de listagem da aplicacao.

e Se for qualquer outro método, apenas renderizamos a pagina novamente

com o método render() na linha 12.

Deu para perceber que o objeto request € essencial nas nossas Views,

Separei aqui alguns atributos desse objeto que provavelmente serao os

mais utilizados por vocé:

e request.scheme: String representando o esquema (se veio por uma
conexao HTTP ou HTTPS).

e request.path: String com o caminho da pagina requisitada -
exemplo: /eursos/curso-de-python/detalhes.

e request.method: Conforme citamos, contém o método HTTP da requisi¢cao
(GET, POST, UPDATE, OPTION, etc).

e request.content_type: Representa o tipo MIME da requisicao
- text/plain para texto plano, image/png para arquivos .PNG, por exemplo
- saiba mais clicando aqui.

e request.GET: Um dict contendo os parametros GET da requisicao.

e request.POST: Um dict contendo o0s parametros do corpo de uma
requisi¢cao POST.

e request.FILES: Caso seja uma pagina de upload, contém os arquivos que
foram enviados.

e request.COOKIES: Dict contendo todos os COOKIES no formato de string.

Observacdo: Para saber mais sobre os campos do objeto request, dé uma
olhada na classe django.http.request.HttpRequest!

DEBUGANDO UMA REQUISICAO NO PYCHARM

Algumas vezes, é interessante vocé ver o conjunto de dados que esta
chegando do usuario para o Django. Outras vezes, precisamos verificar se esta
tudo correto, se tudo estd vindo como esperado ou se existem erros na
requisicao.

https://developer.mozilla.org/pt-BR/docs/Web/HTTP/Basico_sobre_HTTP/MIME_types

Uma forma de vermos isso é debugando o codigo, isto é: pausando a
execucao do coédigo no momento em que a requisicao chega no servidor e

analisando seus atributos, verificando se esta tudo OK (ou ndo).

Se vocé utiliza o PyCharm, ou alguma outra IDE com debugger, pode
fazer os passos que eu vou descrever aqui (creio que em outra IDE, o processo

seja similar).

Por exemplo, vamos adicionar um breakpoint no método de uma View.
Para isso, clique duas vezes ao lado esquerdo da linha onde quer adicionar o

breakpoint. O resultado deve ser esse (linha 33, veja o circulo vermelho na

barra a esquerda, proximo ao contador das linhas).

Com isso, quando uma requisicao for enviada do navegador do usuario e
que venha a passar nessa linha de cdodigo, o debugger entrara em agao,

mostrando as variaveis naquela linha de codigo.

Nesse exemplo, quando o debugger chegou nessa linha, € possivel

inspecionar todos os valores atuais na Requisicao, contexto, ambiente e mais:

A partir dessa visao, podemos verificar todos os atributos do objeto

request que chegou no servidor!

Confie em mim, isso ajuda MUITO a detectar erros!

Dito isso, agora vamos ver os detalhes do tratamento de requisicoes
através de Class Based Views.

AS PRINCIPAIS CLASS BASED VIEWS

Conforme expliquei anteriormente, as Class Based Views servem para
facilitar nossa vida, encapsulando funcionalidades comuns que todo

desenvolvedor sempre acaba implementando. Por exemplo, geralmente:

e Queremos que quando um usuario pedir a pagina inicial, seja mostrado
apenas uma pagina simples, com as opcdes possiveis.

e Queremos que a nossa pagina de listagem contenha a lista de todos os
funcionarios cadastrados no banco de dados.

e Queremos uma pagina com um formulario contendo todos os campos
pré-preenchidos para atualizagao de dados de um funcionario.

e Queremos uma pagina de exclusao de funcionarios.

e Queremos um formulario em branco para inclusdao de um novo

funcionadrio.

Certo?!

Pois €, as CBVs - Class Based Views - facilitam isso para nos!
Temos basicamente duas formas para utilizar uma CBV:

e Primeiro, podemos utilizd-las diretamente no nosso URLConf (urls.py),

através do método estatico as_view, dessa forma:

from django.urls import path
from django.views.generic import TemplateView

urlpatterns = [
path('', TemplateView.as_view(template name="index.html")),

]

e E a segunda maneira, a mais utilizada e mais poderosa, é criar uma
Classe herdando da View desejada e sobrescrevendo os atributos e
meétodos nessa subclasse criada, alterando sua l6gica para atingir seus
objetivos.

Abaixo, veremos as Views mais utilizadas, e como podemos usa-las em

NOSSO projeto.

TemplateView

Por exemplo, para o primeiro caso (mostrar uma pagina simples),

podemos utilizar a TemplateView (acesse a documentacao) para renderizar uma

pagina, da seguinte forma:

class IndexTemplateView(TemplateView):
template_name = "index.html"

Configurando as rotas da seguinte maneira:

from django.urls import path
from helloworld.views import IndexTemplateView

urlpatterns = [
path('', IndexTemplateView.as_view(), name='index'),

]

ListView
J& para o segundo caso, de listagem de funcionarios, podemos utilizar a

ListView (acesse a documentacao).

Nela, nés configuramos o Model que deve ser buscado (Funcionario no
NOSSO caso), € automaticamente faz a busca por todos os registros presentes no

banco de dados da entidade informada.

Por exemplo, podemos descrever a View da seguinte forma:

from django.views.generic.list import ListView
from helloworld.models import Funcionario

class FuncionarioListView(ListView):

template_name = "website/lista.html”
model = Funcionario
context_object_name = "funcionarios"”

Utilizamos o atributo contexto_object _name para nomear a variavel que
estara disponivel no contexto do template HTML (caso nao utilizado, o nome

padrao dado pelo Django sera object).

E configuramos sua rota da seguinte maneira:

from django.urls import path
from helloworld.views import FuncionariolListView

https://docs.djangoproject.com/pt-br/4.0/ref/class-based-views/base/#templateview
https://docs.djangoproject.com/pt-br/4.0/ref/class-based-views/generic-display/#listview

urlpatterns = [
path('funcionarios/', FuncionariolListView.as_view(), name='lista_funcionarios')

]

Isso resultard em uma pagina lista.html contendo um objeto chamado
funcionarios com todos os Funcionarios cadastrados, disponivel para iteragcao.

Dica: E uma boa prdtica colocar o nome da View no formato: Model +
CBYV base. Por exemplo: uma View que lista todos os Cursos, receberia o nome
de CursolListView (Model = Curso e CBV = ListView).

UpdateView

Para a atualizagdo de registros podemos utilizar a UpdateView (veja _a
documentacao). Com ela, configuramos qual o Model (atributo model), quais
campos (atributo field) e qual o nome do template (atributo template name), e
com isso temos um formulario para atualizacdo de registros do modelo
definido.

NO NOSSO Ccaso:

from django.views.generic.edit import UpdateView
from helloworld.models import Funcionario

class FuncionarioUpdateView(UpdateView):
template_name = 'atualiza.html’
model = Funcionario
fields = [
'nome"’,
'sobrenome’,
‘cpf',
"tempo_de_servico',
'remuneracao’

Dica: Ao invés de listar todos os campos em fields em formato de lista

de strings, podemos utilizar fields = ' _all '.Dessa forma, o Django ird

buscar todos os campos para vocé!
Mas de onde o Django vai pegar o id do objeto a ser buscado?

O Django precisa ser informado do id ou slug para poder buscar o
objeto correto a ser atualizado. Podemos fazer isso de duas formas.

Primeiro, na configuracao de rotas (urls.py):

https://docs.djangoproject.com/pt-br/4.0/ref/class-based-views/generic-editing/#updateview
https://docs.djangoproject.com/pt-br/4.0/ref/class-based-views/generic-editing/#updateview

from django.urls import path
from helloworld.views import FuncionarioUpdateView

urlpatterns = [
Utilizando o {id} para buscar o objeto
path(
"funcionario/<id>",
FuncionarioUpdateView.as_view(),
name="'atualiza_funcionario'),

Utilizando o {slug} para buscar o objeto
path(
'funcionario/<slug>",
FuncionarioUpdateView.as_view(),
name='atualiza_funcionario'),

Mas o que é slug?

Slug € uma forma de gerar URLs mais legiveis a partir de dados ja
existentes, transformando todas as letras para minusculas e todos os espacos
para hifens.

Exemplo: podemos criar um campo slug utilizando o campo nome do
funcionario. Dessa forma, as URLs ficariam assim:

e /funcionario/vinicius
E ndo assim (utilizando o id na URL):

e /funcionario/175

A segunda forma de buscar o objeto ¢é utilizando (ou sobrescrevendo) o
meétodo get object() da classe pai UpdateView.

A documentacao deste método traz (traduzido):

Retorna o objeto que a View ira mostrar. Requer self.queryset e um
argumento pk ou slug no URLConf. Subclasses podem sobrescrever esse
método e retornar qualquer objeto.

Ou seja, o Django nos da total liberdade de utilizarmos a convencao
(Quando passamos os parametros na configuracao da rota - URLConf) ou a
configuragcao (Quando sobrescrevemos o método get_object()).

Basicamente, o método get _object() deve pegar o id ou slug da URLe
buscar no banco de dados o registro com aquele id.

Uma forma de sobrescrevermos esse método na View de listagem de
funcionarios (FuncionariolListView) pode ser implementada da seguinte

maneira;

from django.views.generic.edit import UpdateView
from helloworld.models import Funcionario

class FuncionarioUpdateView(UpdateView):

template_name = "atualiza.html®
model = Funcionario

fields = '__all_ ‘'
context_object_name = 'funcionario'

def get_object(self, queryset=None):
funcionario = None

0s campos {pk} e {slug} estdo presentes em self.kwargs
id = self.kwargs.get(self.pk_url_kwarg)
slug = self.kwargs.get(self.slug_url_kwarg)

if id is not None:
Busca o funcionario apartir do id
funcionario = Funcionario.objects.filter(id=id).first()

elif slug is not None:
Pega o campo slug do Model
campo_slug = self.get_slug field()

Busca o funcionario apartir do slug
funcionario = Funcionario.objects.filter(**{campo_slug: slug}).first()

Retorna o objeto encontrado
return funcionario

Dessa forma, os dados do funcionario estarao disponiveis na variavel

funcionario no template atualiza.html!

DeleteView

Para deletar funcionarios, utilizamos a DeleteView (documentacao).

Sua configuracao é similar a UpdateView: nds devemos informar ao
Django qual objeto queremos excluir via URLConf ou através do método
get_object(). Precisamos configurar:

e O template que sera renderizado.
e O model associado a essa view.
e O nome do objeto que estara disponivel no template.

e A URL de retorno, caso haja sucesso na delecao do Funcionario.

https://docs.djangoproject.com/pt-br/4.0/ref/class-based-views/generic-editing/#deleteview

Com isso, a view pode ser codificada da seguinte forma:

class FuncionarioDeleteView(DeleteView):

template_name = "website/exclui.html”
model = Funcionario
context_object_name = 'funcionario’

success_url = reverse_lazy(
"website:1lista_funcionarios"”

)

O meétodo reverse lazy() serve para fazer a conversao de rotas (similar
ao reverse()) mas em um momento em que o URLConf ainda nao foi
carregado pelo Django (que € o caso aqui).

Assim como na UpdateView, fazemos a configuracdao do id a ser buscado
no URLConf, da seguinte forma:

urlpatterns = [
path(
‘funcionario/excluir/<pk>",
FuncionarioDeleteView.as_view(),
name="'deleta_funcionario')

Assim, precisamos apenas fazer um template de confirmacao da exclusao

do funcionario. Podemos fazer este template da seguinte forma:

<form method="post">
{% csrf_token %}

Vocé tem certeza que quer excluir o funcionario {{ funcionario.nome }}?

<button type="button">
Cancelar
</button>

<button>Excluir</button>

</form>

Algumas colocacodes:

e Atagdo Django {% csrf_token %} € obrigatdria em todos os forms pois
esta relacionado a protecao que o Django prové ao CSRF - Cross Site
Request Forgery (tipo de ataque malicioso - saiba mais aqui).

e Nao se preocupe com a sintaxe deste template, pois veremos mais sobre
ele no préximo capitulo!

https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)

CreateView

Nessa View, precisamos apenas dizer para o Django o model, o nome
do template, a classe do formulario (vamos tratar mais sobre Forms ali embaixo)
e a URL de retorno, caso haja sucesso na inclusao do Funcionario.

Podemos fazer isso assim:

from django.views.generic import CreateView

class FuncionarioCreateView(CreateView):
template_name = "website/cria.html"
model = Funcionario
form_class = InsereFuncionarioForm
success_url = reverse_lazy("website:lista_funcionarios")

O meétodo reverse_lazy() traduz a View em URL. No nosso caso,
queremos que quando haja a inclusdo do Funcionario, sejamos redirecionados
para a pdgina de listagem, para podermos conferir que o Funciondrio foi

realmente adicionado.

A configuracao da rota no arquivo urls.py pode ser feita da seguinte
forma:

from django.urls import path
from helloworld.views import FuncionarioCreateView

urlpatterns = [
path(
'funcionario/cadastrar/’,
FuncionarioCreateView.as_view()
name="'cadastra_funcionario'),

Com isso, estara disponivel no template configurado (website/cria.html,
NO NOSSO caso), um objeto form contendo os campos do formulario para

criacao do novo funcionario.

E agora trataremos da forma que o framework traz para construcao de

Formularios em cédigo HTML, os Forms do Django!

FORMS NO DJANGO

Podemos utilizar o formulario do Django nas paginas HTML de duas
formas. A primeira, mostra o formulario inteiro "cru”, isto é, sem formatacao e

sem estilo, conforme o Django nos entrega.

Podemos utiliza-lo no nosso template da seguinte forma:

<form method="post">
{% csrf_token %}

{{ form }}

<button type="submit">Cadastrar</button>
</form>

Observagdo: apesar de ser um Form, sua renderizagdo ndo contém
as tags <form></form> - cabendo a nos inclui-los no template.

Ja asegunda, € mais trabalhosa, pois temos que renderizar campo a
campo no template. Porém, nos da um nivel maior de customizacao. Podemos

renderizar cada campo do form dessa forma:

<form method="post">
{% csrf_token %}

<label for="{{ form.nome.id_for_label }}">Nome</label>
{{ form.nome }}

<label for="{{ form.sobrenome.id for_label }}">Sobrenome</label>
{{ form.sobrenome }}

<label for="{{ form.cpf.id_for_label }}">CPF</label>
{{ form.cpf }}

<label for="{{ form.tempo_de servico.id for_label }}">Tempo de Servigo</label>
{{ form.tempo_de_servico }}

<label for="{{ form.remuneracao.id for_label }}">Remunera¢ao</label>
{{ form.remuneracao }}

<button type="submit">Cadastrar</button>
</form>

Nesse template:

e {{ form.campo.id for_ label }}traz o id da tag <input> para adicionar
a tag <label></label>.
e Utilizamos o {{ form.campo }} para renderizar apenas um campo do

formulario, e nao ele inteiro.

Esse template sera renderizado em uma pagina HTML no navegador do
usuario do nosso sistema. Apos ser apresentado, o formulario sera preenchido e
entao submetido de volta ao nosso servidor. E agora vem a parte mais
complexa quando desenvolvemos Formularios utilizando o Django: o
tratamento de dados!

O tratamento dos dados enviados no formuldrios é uma tarefa que
pode ser bem complexa.

Considere um formulario com diversos campos e diversas regras de
validacgao: seu tratamento Ndo € mais um processo simples.

Os Forms do Django sdo formas de descrever, em cédigo Python, os
formularios das paginas HTML, simplificando e automatizando seu processo
de criacao e validacao.

O Django trata trés partes distintas dos formularios:

e Preparacao dos dados tornando-os prontos para renderizagao
e Criagdo de formularios HTML para os dados

e Recepcgao e processamento dos formularios enviados ao servidor

Basicamente, queremos uma forma de renderizar em nosso template o
seguinte codigo HTML:

<form action="/insere-funcionario/" method="post">
<label for="nome">Nome: </label>
<input id="nome" type="text" name="nome" value="">
<input type="submit" value="Enviar">

</form>

Que, ao ser submetido ao servidor, tenha seus campos de entrada
validados e, em caso de validacao positiva — sem erros, seja inserido no banco de

dados e no caso de falha na validacao, que possamos mostrar isso ao usuario.
No centro desse sistema de formularios do Django estd a classe Form.

Nela, nés descrevemos os campos que estarao disponiveis no formulario
HTML. Por exemplo, podemos descrever o formulario acima da seguinte forma:

from django import forms

class InsereFuncionarioForm(forms.Form):
nome = forms.CharField(
label="Nome do Funcionario',
max_length=1600
)

Neste formulario:

e Utilizamos a classe forms.CharField para descrever um campo de texto.

e O parametro label descreve um rotulo para esse campo.

e max_length descreve o tamanho maximo que esse input pode receber

(100 caracteres, no caso).

Veja os diversos tipos de campos disponiveis acessando aqui.

A classe forms.Form possui um método muito importante, chamado
is valid(). Quando um formulario é submetido ao servidor, esse € um dos
métodos que ira realizar a validacao dos campos do formulario.

Se tudo estiver OK, ele colocard os dados do formulario no atributo
cleaned data (que pode ser acessado por vocé posteriormente para pegar
alguma informacao - como o nome que foi inserido pelo usuario no campo

<input name='nome"'>).

Como o processo de validacdo do Django é bem complexo, optei por
descrever aqui o essencial para comecarmos a utiliza-lo. Para saber mais

sobre o funcionamento dos Forms, acesse a documentacdo aqui.

Vamos ver agora um exemplo mais complexo com um formulario de
insercao de um Funcionario com todos os campos. Para isso, crie o arquivo

forms.py no app website.

Em seguida, e consultando a documentacao dos possiveis campos do

formulario, podemos descrever um Form de insercao assim:

from django import forms
class InsereFuncionarioForm(forms.Form)

nome = forms.CharField(
required=True,
max_length=255

)

sobrenome = forms.CharField(
required=True,
max_length=255

)

cpf = forms.CharField(
required=True,
max_length=14

)

tempo_de_servico = forms.IntegerField(
required=True

)

remuneracao = forms.DecimalField()

https://docs.djangoproject.com/pt-br/4.0/ref/forms/fields/
https://docs.djangoproject.com/pt-br/4.0/ref/forms/validation/
https://docs.djangoproject.com/pt-br/4.0/ref/forms/fields/

Affff, mas o Model e o Form sdo quase iguais... Terei que reescrever os

campos toda vez?

Claro que ndo, jovem! Por isso o Django nos presenteou com o incrivel
ModelForm/

Com o ModelForm nds configuramos o Model que servira como base do
Formulario; os campos que gqueremos a partir do atributo fields, e, através do

campo exclude, 0s campos que Nao queremMaos.

Para fazer essa configuracao, utilizamos uma classe interna, chamada
Meta. Através dela, € possivel configurar uma série de comportamentos do
ModelForm, como o modelo que sera utilizado (atributo model), os campos
(através do atributo fields), a forma de ordenacao (através do
atributo ordering) e mais (veja mais sobre Meta options).

Assim, nosso ModelForm, pode ser descrito da seguinte forma:

from django import forms

class InsereFuncionarioForm(forms.ModelForm):
class Meta:
Modelo base
model = Funcionario

Campos que estardo no form
fields = [

'nome"’,

'sobrenome’,

"cpf',

'remuneracao’

]

Campos que ndo estardo no form
exclude = [
"tempo_de_servico'

]

Podemos utilizar apenas o campo fields, apenas o exclude ou 0s dois
juntos e mesmo ao utiliza-los, ainda podemos adicionar outros campos,
independente dos campos do Model.

O resultado serd um formulario com todos os campos presentes
no fields, mMmenos os campos do exclude mais 0s outros campos que
adicionarmos avulsamente.

Ficou confuso?

https://docs.djangoproject.com/pt-br/4.0/topics/db/models/#meta-options

Entdao vamos ver um exemplo que utiliza todos os atributos e ainda

adiciona novos campos ao formulario:

from django import forms

class InsereFuncionarioForm(forms.ModelForm)
chefe = forms.BooleanField(
label="Este Funcionario exerce funcdo de Chefia?',
required=True,

)

biografia = forms.CharField(
label="'Biografia’,
required=False,
widget=forms.TextArea

)
class Meta:
Modelo base
model = Funcionario

Campos que estardo no form

fields = [
'nome"’,
'sobrenome’,
"cpf',
'remuneracao’
]

Campos que ndo estardo no form
exclude = [
"tempo_de_servico'

]

Isso vai gerar um formulario com:

e Todos os campos contidos em fields

e Sem os campos contidos em exclude

e O campo forms.BooleanField como um checkbox (<input
type="'checkbox' name='chefe' ...>)

e Biografia como uma area de texto (<textarea name='biografia'

. .></textarea>)

Assim como € possivel definir atributos nos modelos, os campos do
formulario também sao customizaveis.

Veja que o campo biografia é do tipo CharField, portanto deveria ser

renderizado como um campo <input type='text' ...>"

Contudo, nés modificamos o campo, através da configuracao widget
com forms.TextArea. Assim, ele nao mais sera um simplesinput, mas sera

renderizado como um <textarea></textarea> no nosso template!

Nos veremos mais sobre formuldrios no préximo capitulo, quando

formos renderiza-los em nossos templates.

Agora vamos tratar de um componente muito importante no

processamento de Requisicdes e formulacdao de Respostas da nossa aplicacao:

os Middlewares.

MIDDLEWARES

Middlewares sao trechos de codigos que podem ser executados antes ou
depois do processamento de Requisicdes/Respostas pelas Views da nossa
aplicacdo. E uma forma que ndés temos para alterar como o Django processa
algum dado de entrada ou de saida.

Se vocé olhar no arquivo settings.py, noés ja temos a lista
MIDDLEWARE com diversos middlewares pré-configurados:

MIDDLEWARE = [
'django.middleware.security.SecurityMiddleware’,
'django.contrib.sessions.middleware.SessionMiddleware"’,
'django.middleware.common.CommonMiddleware’,
'django.middleware.csrf.CsrfViewMiddleware"',
'django.contrib.auth.middleware.AuthenticationMiddleware’,
'django.contrib.messages.middleware.MessageMiddleware’,
‘django.middleware.clickjacking.XFrameOptionsMiddleware",

Por exemplo, temos o middleware AuthenticationMiddleware.

Ele é responsavel por adicionar a varidvel user a todas as requisicoes.
Assim, vocé pode, por exemplo, mostrar o usuario logado no seu template:

014, {{ user.email }}

</1li>

Vocé pode pesquisar e perceber que em lugar nenhum em nosso codigo

Nnos adicionamos a varidvel user ao Contexto das Requisicoes.

Nao é muito comum, mas pode ser que vocé tenha que adicionar algum
comportamento antes de comecar a tratar a Requisicao ou depois de formar a
Resposta.

Portanto, veremos agora como podemos criar um middleware.

Um middleware € um método callable (Que tem uma implementacao do
método _ call) que recebe uma Requisicao e retorna uma Resposta e,
assim como uma View, pode ser escrito como fungao ou como Classe.

Um exemplo de middleware escrito como funcao é:

def middleware_simples(get_response):
Codigo de inicializag¢do do Middleware
def middleware(request):
Codigo a ser executado antes da View e
antes de outros middlewares serem executados

response = get_response(request)

Codigo a ser executado apos a execugdo
da View que ird processar a requisi¢do

return response

return middleware

E como Classe:

class MiddlewareSimples:
def __init__ (self, get_response):
self.get_response = get_response

Codigo de inicializag¢do do Middleware
def __call__ (self, request):
Codigo a ser executado antes da View e
antes de outros middlewares serem executados

response = self.get_response(request)

Codigo a ser executado apds a execug¢do
da View que 1ird processar a requisi¢do

return response

Cada Middleware é executado de maneira encadeada, do topo da

lista MIDDLEWARE para o fim. Sendo assim, a saida de um é a entrada do
préximo.

Ja utilizando a construcao do middleware via Classe, nés temos trés
métodos importantes:

O METODO process_view

Assinatura do método: process view(request, func, args, kwargs)

Esse método é chamado logo antes do Django executar a View que vai
processar a Requisicao e possui 0s seguintes parametros:

e request é um objeto da Classe HttpRequest, do proprio Django.

e func é a propria View que o Django esta prestes a chamar, ao final da
cadeia de middlewares.

e args é a lista de parametros posicionais que serao passados a View.

e kwargs é o dict contendo os argumentos nomeados (keyword arguments)
gue serao passados a View.

Esse método deve retornar None ou um objeto HttpResponse:

e Caso retorne None, o Django entenderad que deve continuar a cadeia
de Middlewares.

e Caso retorne HttpResponse, o Django entenderda que a resposta esta
pronta para ser enviada de volta e nao vai se preocupar em chamar o
resto da cadeia de Middlewares, nem a View que iria processar a
requisicao.

O METODO process_exception

Assinatura do método: process_exception(request, exception)

Esse método € chamado quando uma View langa uma excecao e deve

retornar ou None ou HttpResponse.

Caso retorne um objeto HttpResponse, o Django ira aplicar o
Middleware de resposta e o Middleware de template, retornando a requisicao
ao navegador do usuario.

e request é o objeto HttpRequest

e exception é a excecao que foi lancada pela view.

O METODO process_template_response

Assinatura do método: process template response(request, response)

Esse método é chamado logo apds a View ter terminado sua execucao
caso a resposta tenha uma chamada ao método render() indicando que a

reposta possui um template.

Possui os seguintes parametros:

e request é um objeto HttpRequest.
e response & 0 objeto TemplateResponse retornado pela view ou por outro

middleware.

Agora vamos criar um middleware um pouco mais complexo para

exemplificar o que foi dito aqui!

Vamos supor que queremos um middleware que filtre requisi¢coes e s6
processe aguelas que venham de uma determinada lista de IP’s.

Esse middleware é muito util quando temos, por exemplo, um conjunto
de servidores com IP fixo que vao se conectar entre si. Vocé poderia, por
exemplo, ter uma configuracao no seu settings.py chamada ALLOWED_SERVERS

contendo a lista de IPs autorizados a se conectar ao seu servico.

Para isso, precisamos abrir o cabecalho das requisicdées que chegam no
nosso servidor e verificar se o IP de origem esta autorizado. Como precisamos
dessa logica antes da requisicao chegar na View, vamos adiciona-la ao

meétodo process_view, da seguinte forma:

class FiltraIPMiddleware:

def __init_ (self, get_response=None):
self.get_response = get_response

def __call__(self, request):
response = self.get _response(request)
return response

def process_view(request, func, args, kwargs):
Lista de IPs autorizados
ips_autorizados = ['127.0.0.1"]

IP do usudrio
ip = request.META.get('REMOTE_ADDR")

Verifica se o IP do estd na lLista de IPs autorizados
if ip not in ips_autorizados:
Se usudrio ndo autorizado > HTTP 463 (Ndo Autorizado)
return HttpResponseForbidden("IP ndo autorizado™)

Se for autorizado, ndo fazemos nada
return None

Depois disso, precisamos registrar nosso middleware no arquivo de
configuracdes settings.py (na configuracao MIDDLEWARE):

MIDDLEWARE = [
"django.middleware.security.SecurityMiddleware’,
‘django.contrib.sessions.middleware.SessionMiddleware"’,
‘django.middleware.common.CommonMiddleware’,
"django.middleware.csrf.CsrfViewMiddleware"',
'django.contrib.auth.middleware.AuthenticationMiddleware’,
"django.contrib.messages.middleware.MessageMiddleware"',
‘django.middleware.clickjacking.XFrameOptionsMiddleware"',

Nosso Middleware
'helloworld.middlewares.FiltraIPMiddleware"',

Agora, podemos testar seu funcionamento alterando a lista

ips_autorizados:

e Coloque ips_autorizados = ['127.0.0.1'] e tente acessar alguma URL
da aplicagcao: devemos conseguir acessar normalmente nossa aplicacao,
pois como estamos executando o servidor localmente, nosso IP sera
exatamente igual a 127.0.0.1 e, portanto, passaremos no teste condicional
gue desenvolvemos no Middleware.

e Agora coloque ips_autorizados = []e tente acessar alguma URL da
nossa aplicacdo: deve aparecer a mensagem “IP nao autorizado”, pois
nosso IP (127.0.0.1) nao esta mais autorizado a acessar o servidor,

mostrando que nossa logica funcionou corretamente!

CONCLUSAO DO CAPITULO

Neste capitulo vimos varios conceitos importantes: vimos os tipos de
Views (funcdes e classes), os principais tipos de CBV (Class Based Views), como
mapear URLs para as views da aplicacao através do URLConf, como utilizar os
poderosos Forms do Django, Middlewares e muito mais!

No proximo capitulo, veremos a camada da nossa aplicagao, que € quem
faz a Interface com o Usuario, a Camada Template.

CAMADA TEMPLATE

O foco deste capitulo sera a Camada Template da arquitetura do Django.
Neste capitulo vamos aprender a configurar, customizar e estender templates.
Também veremos como utilizar os filtros e tags que o proprio Django nos
disponibiliza, assim como criar tags e filtros customizados e Middlewares, que
Sao pecas muito importantes no desenvolvimento de aplicagdes que utilizam o
Django!

Além disso, veremos como customizar o visual de paginas web com o
famoso Bootstrap, que dara uma identidade visual profissional as paginas da

nossa aplicacao!

A Camada Template tem uma importancia muito grande nas aplicacdes
Django, pois € ela quem da cara ao nosso sistema, isto €, faz a interface com o
usudrio. E nela que se encontra o cédigo Python - responsavel por renderizar
Nossas paginas - € 0os arquivos HTML, CSS e Javascript - que darao vida a nossa

aplicacao!

Contudo, vale ressaltar que as aplicacbes web vem sofrendo uma
mudanc¢a em sua arquitetura. Antigamente, era muito comum que todo codigo
da aplicacao web vivesse apenas no Backend, como uma aplicagcao apenas -
com o servidor renderizando as paginas da aplicacdao. Hoje em dia, € muito
comum haver essa separacao entre Backend e Frontend, com duas aplicacdes
distintas: o Backend servindo o Frontend, através de - geralmente - uma AP,
enquanto o Frontend ¢ desenvolvido como uma aplicacao a parte, utilizando
frameworks consagrados como React, Angular ou Vue.js, que consumirao dados
do Backend.

Isso nao quer dizer que a camada Template do Django nao tem mais
utilizagao! Muitos projetos ainda a utilizam, pois ela € muito poderosa, mas seu

uso vem diminuindo.

ONDE ESTAMOS...

Primeiro, vamos relembrar onde estamos no fluxo de

Requisicdo/Resposta da nossa aplicacdo Django:

’III

TEMPLATE

WEBSITE

Agora, estamos na camada que faz a interface do nosso codigo
Python/Django com o usuério, interagindo, trocando informacdes e captando

dados de input.

Antes de mergulhar nessa Camada, vamos comecar pelo comeco,
respondendo a seguinte pergunta: o que € um Template?

DEFINICAO DE TEMPLATE

Basicamente, um template é um arquivo base que pode ser
transformado em outro arquivo (um arquivo HTML, um CSS, um CSV, etc),
através do processo de interpolagao de cédigo.

Um template no Django contém:

e Varidveis que podem ser substituidas por valores, a partir do seu
processamento por uma Engine de Templates (nucleo ou “motor” de
templates). Para se usar variaveis em templates, usamos marcadores
iniciados com chaves, dessa forma: {{ variavel }}.

e Tags que controlam a logica de renderizacao do template. Usamos as
chaves e o simbolo de porcentagem, dessa forma: {% tag %}.

e Filtros que adicionam funcionalidades ao template. Usamos com o

caracter chamado “pipe”, dessa forma: {{ variavel|filtro }}.

Entenda interpolagdo como o processo de se misturar cédigos em
linguagens diferentes (por exemplo HTML com cdédigo Python) adicionando
funcionalidade, e tendo como saida apenas cdédigo em uma das duas

linguagens.
Ndo entendeu ainda?

Pense o seguinte: vocé talvez ja saiba que HTML ndo tem estruturas de

repeticao como o for ou while do Python, correto?

E se fosse possivel criar um cdédigo que misturasse HTML com o for do
Python para criar uma estrutura de repeticao dentro do cédigo HTML, como o

codigo abaixo?!

<h1>Teste de interpola¢ao</hil>

for dado in [1, 2, 3, 4]:
<p>{{ dado }}</p>

E exatamente isso que a interpolacdo faz (com uma pequena diferenca

de sintaxe): adiciona funcionalidades de um cédigo a outro!

Agora vamos a um exemplo com a real sintaxe de interpolacao utilizando

a Engine de templates do Django!

{# base.html contém o template que usaremos como esqueleto #}
{% extends "base.html" %}

{% block conteudo %}
<h1>{{ section.title }}</h1>

{% for f in funcionarios %}
<h2>

{{ funcionario.nome|upper }}

</h2>
{% endfor %}
{% endblock %}

Agora vamos a explicagao:

Linha 1. Escrevemos comentario com a tag {# comentario #}. Eles serdo
processados pelo Engine e nao estarao presentes na pagina resultante.
Linha 2: Utilizamos {% extends "base.html" %} para estender de um
template, ou seja, utiliza-lo como base, passando o caminho para ele.
Linha 4 Podemos facilitar a organizacao do template, criando blocos
com {% block nome_do bloco %}{% endblock %}.

Linha 5. Podemos interpolar varidveis vindas do servidor em nosso
template utilizando {{ secao.titulo }} - dessa forma, estamos
acessando o atributo titulo do objeto secao (que deve estar no Contexto
da resposta).

Linha 7. E possivel iterar sobre objetos de uma lista através da tag
{% for objeto in lista %}{% endfor %}.

Linha 10: Podemos utilizar filtros para aplicar alguma funcao a alguma
variavel. Nesse exemplo, estamos aplicando o filtro upper - que transforma
todos os caracteres de uma string em maiudsculos - ao conteudo de
funcionario.nome. Também é possivel encadear filtros, por exemplo:

{{ funcionario.nome|upper|cut:" " }}

Para facilitar a manipulacao de templates, os desenvolvedores do Django

criaram uma linguagem que contém todos esses elementos e a chamaram de

DTL - Django Template Language! Veremos mais dela neste capitulo!

Para comecarmos a utilizar ostemplatesdo Django, € necessario
primeiro configurar sua utilizacao. E € isso que veremos agoral!

CONFIGURACAO

O nosso arquivo de configuragao settings.py contém a seguinte
configuracao, que define qual Engine (também chamada de Backend) fara o
processamento dos templates da nossa aplicacao:

TEMPLATES = [
{
"BACKEND': 'django.template.backends.django.DjangoTemplates’,
'DIRS': [],
"APP_DIRS': True,
'OPTIONS': {},
¥
]

Mas vocé ja se perguntou o que essa configuracao quer dizer? Nela:

e BACKEND € o caminho para uma classe que implementa a API de
templates do Django.

e DIRS define uma lista de diretdérios onde o Django deve procurar pelos
templates. A ordem da lista define a ordem de busca.

e APP_DIRS define se o Django deve procurar por templates dentro dos
diretorios dos apps instalados em INSTALLED_APPS.

e OPTIONS contém configuracdes especificas do BACKEND escolhido, ou seja,
dependendo do backend de templates utilizado, vocé podera
configura-lo utilizando parametros em OPTIONS.

Por ora, vamos utilizar as configuracdes padrao “de fabrica” pois elas ja

nos atendem. Agora, vamos ver sobre a tal Django Template Language!

DJANGO TEMPLATE LANGUAGE (DTL)

A DTL é a linguagem padrao de templates do Django. Ela é simples,
porém poderosa. Dando uma olhada na sua documentacao, podemos ver a
filosofia da DTL (traduzido):

Se vocé tem alguma experiéncia em programacdo, ou se vocé estd acostumado
com linguagens que misturam cddigo de programacdo diretamente no HTML,
vocé deve ter em mente que o sistema de templates do Django ndo é

https://docs.djangoproject.com/pt-br/4.0/ref/templates/language/

simplesmente cddigo Python embutido no HTML. Isto é: o sistema de templates
foi desenhado para ser a apresentagdo, e ndo para conter logica!

Se vocé vem de outra linguagem de programac¢ao deve ter tido contato
com O seguinte tipo de construcao: codigo de programacao adicionado
diretamente no codigo HTML (como PHP).

Isto é o terror dos designers (e nao so deles)!

Ponha-se no lugar de um designer que nao sabe nada sobre
programacao. Agora imagina vocé tendo que dar manuteng¢ao nos estilos de
uma pagina LOTADA de cédigo de programacao?!

Complicado, hein?!

Por esse motivo que o template ndo deve conter légica de negécio,
apenas logica que altere a apresentag¢ao dos dados!

Agora, nada melhor para aprender sobre a DTL do que botando a mao na
massa e melhorando as paginas da nossa aplicacao. E para deixar as paginas
visualmente agradaveis, vamos utilizar o famoso Bootstrap!

CONSTRUINDO A BASE DO TEMPLATE

Nosso template que servira de esqueleto deve conter o coédigo HTML que
ira se repetir em todas as paginas.

Devemos colocar nele os trechos de cddigo mais comuns de paginas
HTML. Por exemplo, toda pagina HTML:

e Deve ter astags: <html></html>, <head></head> e <body></body>.
e Deve ter os Ilinks para arquivos estaticos: <link></link> e
<script></script>.

Vocé pode fazer o download dos arquivos necessarios para O NOSSO
projeto agui (Bootstrap) e agqui (JOuery) - que € uma dependéncia do Bootstrap.

Faca isso para todos as bibliotecas externas que queira utilizar (ou utilize
um CDN - Content Delivery Network).

Ok! Agora, com os arquivos devidamente colocados na pasta /static/,

podemos comecar com Nosso tem,o/ate:

https://getbootstrap.com/
https://getbootstrap.com/docs/5.1/getting-started/download/
https://jquery.com/download/
https://pt.wikipedia.org/wiki/Rede_de_fornecimento_de_conte%C3%BAdo

<IDOCTYPE html>
<html>
{% load static %}
<head>
<title>
{% block title %}Gerenciador de Funcionarios{% endblock %}
</title>

<!-- Estilos -->

<link rel="shortcut icon" type="image/png" href="{% static 'website/img/favicon.png' %}">
<link rel="stylesheet" href="{% static 'website/css/bootstrap.min.css' %}">

<link rel="stylesheet" href="{% static 'website/css/master.css' %}">

{% block styles %}{% endblock %}
</head>

<body>
<nav class="navbar navbar-expand-1lg navbar-light bg-white">

<button class="navbar-toggler" type="button" data-toggle="collapse"
data-target="#conteudo-navbar" aria-controls="conteudo-navbar"
aria-expanded="false" aria-label="Ativar navegac¢do">

</button>

<div class="collapse navbar-collapse" id="conteudo-navbar">
<ul class="navbar-nav mr-auto">
<li class="nav-item active">

Pagina Inicial

</1i>
<li class="nav-item">

Funciondrios

</1li>

</div>
</nav>

{% block conteudo %}{% endblock %}

<script src="{% static 'website/js/jquery.min.js' %}"></script>
<script src="{% static 'website/js/bootstrap.min.js' %}"></script>

{% block scripts %}{% endblock %}
<script src="{% static 'website/js/scripts.js' %}"></script>

</body>
</html>

E vamos as explicacdes:

e <!DOCTYPE html> serve para informar ao browser do usuario que se trata
de uma pagina HTMLS5.

e Para que o Django possa carregar dinamicamente os arquivos estaticos
do site, utilizamos a tag static. Ela vai fazer a busca do arquivo que vocé
quer e fazer a conversao dos links corretamente. Para utiliza-la, é
necessario primeiro carrega-la e fazemos isso através do codigo

{% load <modulo> %}. Apos carrega-la, utilizamos a tag da seguinte
maneira: {%static 'caminho/para/arquivo' %}, passando como
parametro a localizacao relativa a pasta /static/.

Podemos definir quaisquer blocos no nosso template com a tag
{% block nome_do_bloco %}{% endblock %}. Fazemos isso para organizar
melhor as paginas que irao estender esse template. Podemos passar um
valor padrao dentro do bloco (igual estd sendo utilizado nalinha 6) -
dessa forma caso nao seja definido nenhum valor no template filho - o
valor padrao é aplicado.

Colocamos 0s arquivos necessarios para o funcionamento do Bootstrap
nesse template, isto é: o jQuery, o CSS e o Javascript do Bootstrap.

O link para outras paginas da nossa aplicacao é feito utilizando-se a tag
{% url 'nome_da_view' parml parm2... %}. Dessa forma, deixamos que o
Django cuide da conversao para URLs validas!

O conjunto de tags <nav></nav> definem a barra superior de navegacao
com os links para as paginas da aplicagao. Esse também é um trecho de
codigo presente em todas as paginas, por isso, adicionamos ao

template. (Documentacao da Navbar - Bootstrap)

E pronto! Temos um template base!

Agora, vamos customizar a tela principal da nossa aplicacao:

a index.html!

PAGINA INICIAL

Template: website/index.html

Nossa tela inicial tem o objetivo de apenas mostrar as opcdes disponiveis

a0 usuario, que sao:

Link para a pagina de cadastro de novos Funcionarios.
Link para a pagina de listagem de Funcionarios.

Primeiramente, precisamos dizer ao Django que queremos utilizar o

template que definimos acima como base.

Para isso, utilizamos a seguinte tag do Django, que serve para que

um template estenda de outro:

https://getbootstrap.com/docs/5.1/components/navbar/

{% extends “caminho/para/template” %}

Com isso, podemos fazer:

<!-- Estendemos do template base -->
{% extends "website/_layouts/base.html" %}

<!-- Bloco que define o <title></title> da nossa pdgina -->
{% block title %}Pagina Inicial{% endblock %}

<!-- Bloco de conteudo da nossa pdgina -->
{% block conteudo %}
<div class="container">
<div class="row">
<div class="col-1g-6 col-md-6 col-sm-6 col-xs-12">
<div class="card">
<div class="card-body">
<h5 class="card-title">Cadastrar Funciondrio</h5>
<p class="card-text">
Cadastre aqui um novo <code>Funciondrio</code>.
</p>
<a href="{% url 'website:cadastra_funcionario' %}"
class="btn btn-primary">
Novo Funcionario

</div>
</div>
</div>
<div class="col-1g-6 col-md-6 col-sm-6 col-xs-12">
<div class="card">
<div class="card-body">
<h5 class="card-title">Lista de Funcionarios</h5>
<p class="card-text">
Veja aqui a lista de <code>Funcionarios</code> cadastrados.
</p>
<a href="{% url 'website:lista_funcionarios' %}"
class="btn btn-primary">
Va para Lista

</div>
</div>
</div>
</div>
</div>
{% endblock %}

Nesse template:

e A classe container_do Bootstrap (linha 9) serve para definir a area Util da
nossa pagina (para que nossa pagina fique centralizada e nao fique
ocupando todo o comprimento da tela).

e As classes row e col-* fazem parte do sistema Grid do Bootstrap € nos

ajuda a tornar nossa pagina responsiva (que se adapta aos diversos tipos
e tamanhos de tela: celular, tablet, desktop, etc). E muito importante vocé

https://getbootstrap.com/docs/5.1/layout/containers/
https://getbootstrap.com/docs/5.1/layout/grid/

se atentar a esse detalhe para nao comprometer a experiéncia do usuario,
caso ele acesse em aparelhos diferentes!

e Asclasses card* fazem parte do componente Card do Bootstrap.

e Asclasses btn e btn-primary (documentacao)sao usadas para dar visual
de botdo a algum elemento.

Com isso, nossa Pagina Inicial - ou nossa Homepage - fica assim:

© pagina Inicial x +

q C A © localhost

@ Pagina Inicial Funcionarios

Cadastrar Funcionario Lista de Funcionarios

Cadastre aqui um novo Funcionario. Veja aqui a lista de Funcionarios cadastrados.

Top, hein?!

Agora vamos para a pagina de cadastro de Funcionarios!

TEMPLATE DE CADASTRO DE FUNCIONARIOS

Template: website/cadastra-funcionario.html

Nesse template, mostraremos o formulario para cadastro de novos

funcionarios ao usuario do sistema.

Lembra que definimos o Form do Django InsereFuncionarioForm no
capitulo passado?

Vamos utiliza-lo no template que criaremos em seguida, adicionando-o
na View FuncionarioCreateView. Dessa forma, esta View ira expor um objeto
form Nno nosso template para que possamos utiliza-lo.

Mas antes de seguir, vamos instalar uma biblioteca que vai nos auxiliar e
muito a renderizar os campos de input do nosso formulario: a Widget Tweaks!

https://getbootstrap.com/docs/5.1/components/card/
https://getbootstrap.com/docs/5.1/components/buttons/
https://github.com/jazzband/django-widget-tweaks/

Com ela, nés temos maior liberdade para customizar os campos de input
do nosso formulario (adicionando classes CSS e/ou atributos, por exemplo).

Para isso, primeiro nés a instalamos com:

pip install django-widget-tweaks

Depois disso, adicione-a a lista de apps instalados, no ja conhecido
arquivo helloworld/settings.py:

INSTALLED_APPS = [

'widget_tweaks'

]

E, no template onde formos utiliza-lo, carregamos ela com a tag load, da

seguinte forma: {% load widget tweaks %}!

E pronto, agora podemos utilizar a tag que ira renderizar os campos do

formulario, a render_field:

{% render_field nome_do_campo parametros %}

Para alterar como o input sera renderizado, utilizamos os parametros da
tag. Dessa forma, podemos alterar o coédigo HTML resultante.

Assim, podemos escrever nosso template de cadastro de Funcionarios da

seguinte forma:

{% extends "website/_layouts/base.html" %}
{% load widget_ tweaks %}
{% block title %}Cadastro de Funcionarios{% endblock %}

{% block conteudo %}
<div class="container">
<div class="row">
<div
class="col-1g-12 col-md-12 col-sm-12 col-xs-12">
<div class="card">
<div class="card-body">
<h5 class="card-title">Cadastro de Funcionario</h5>
<p class="card-text">
Complete o formuldrio abaixo para cadastrar
um novo <code>Funcionario</code>.
</p>
<form method="post">
<!l-- Ndo se esque¢a dessa tag -->

{% csrf_token %}

<!-- Nome -->
<div class="input-group mb-3">
<div class="input-group-prepend">
Nome
</div>
{% render_field form.nome class+="form-control" %}
</div>

<!-- Sobrenome -->
<div class="input-group mb-3">
<div class="input-group-prepend">
Sobrenome
</div>
{% render_field form.sobrenome class+="form-control" %}
</div>

<I-- CPF -->
<div class="input-group mb-3">
<div class="input-group-prepend">
CPF
</div>
{% render_field form.cpf class+="form-control™ %}
</div>

<!-- Tempo de Servig¢o -->
<div class="input-group mb-3">

<div class="input-group-prepend">

Tempo de Servigo

</div>

{% render_field form.tempo_de_servico class+="form-control"” %}
</div>

<!-- Remuneracdo -->
<div class="input-group mb-3">
<div class="input-group-prepend">
Remuneracao
</div>
{% render_field form.remuneracao class+="form-control” %}
</div>

<button class="btn btn-primary">Enviar</button>
</form>
</div>

</div>
</div>
</div>
</div>
{% endblock %}

Alguns pontos importante sobre o formulario acima:

Utilizamos novamente as classes container, row, col-*

Bootstrap.

e card* do

e Conforme mencionei no capitulo passado, devemos adicionar a tag
{% csrf_token %} para evitar ataques de Cross Site Request Forgery.
e Asclasses Input Group do Bootstrap input-group, input-group-prepend e

input-group-text servem para customizar o estilo dos elementos <input
/>.
e Para aplicar uma classe ao campo, utilizamos o simbolo de adicao += no

atributo class: {% render_field form.campo class+='classe' %}

Observacéo: E possivel adicionar a classe CSS form-control

diretamente no nosso Form InsereFuncionarioForm, da seguinte forma:

class InsereFuncionarioForm(forms.ModelForm):
nome = forms.CharField(
max_length=255,
widget=forms.TextInput(
attrs={
‘class': "form-control”
}
)
)

Mas essa é uma péssima ideia porque bagunca codigo CSS dentro de
codigo Python. Ndo faga isso!

Nosso formulario deve ficar assim:

™ Cadastro de Funcionarios X +

q P C A © localhost

@ Pagina Inicial Funcionarios

Cadastro de Funcionario

Complete o formulério abaixo para cadastrar um novo Funcionario.

Nome Jodo

Sobrenome Carlos
CPF | 123.456.789-00
Tempo de Servico 5

Remuneragao = 15000

(- |

Agora, vamos desenvolver o template de listagem de Funcionarios.

https://getbootstrap.com/docs/5.1/forms/input-group/

TEMPLATE DE LISTAGEM DE FUNCIONARIOS

Template: website/lista.html

Nesta pagina, ndés queremos mostrar o conjunto de Funcionarios
cadastrados no banco de dados e as acdes que o usuario da aplicacao pode
tomar, que sao: atualizar os dados de um Funcionario ou exclui-lo.

Vocé se lembra da view FuncionariolListView? Ela é responsavel por
buscar a lista de Funcionarios e expor um objeto chamado funcionarios para
iteracao no template.

Podemos construir nosso template da seguinte forma:

{% extends "website/ layouts/base.html" %}
{% block title %}Lista de Funciondrios{% endblock %}

{% block conteudo %}
<div class="container">
<div class="row">
<div class="col-1g-12 col-md-12 col-sm-12 col-xs-12">
<div class="card">
<div class="card-body">
<h5 class="card-title">Lista de Funcionario</h5>

{% if funcionarios]|length > @ %}
<p class="card-text">
Aqui esta a lista de <code>Funcionarios</code>
cadastrados.
</p>

<table class="table">
<thead class="thead-dark">
<tr>
<th>ID</th>
<th>Nome</th>
<th>Sobrenome</th>
<th>Tempo de Servigo</th>
<th>Remuneracao</th>
<th>A¢bes</th>
</tr>
</thead>

<tbody>
{% for f in funcionarios %}
<tr>
<td>{{ f.id }}</td>
<td>{{ f.nome }}</td>
<td>{{ f.sobrenome }}</td>
<td>{{ f.tempo_de_servico }}</td>
<td>{{ f.remuneracao }}</td>
<td>
<a href="{% url 'website:atualiza_funcionario' pk=f.id %}"

class="btn btn-info">
Atualizar

<a href="{% url 'website:deleta_ funcionario' pk=f.id %}"
class="btn btn-outline-danger">
Excluir

</td>
</tr>
{% endfor %}
</tbody>
</table>
{% else %}
<div class="text-center mt-5 mb-5 jumbotron">
<h5>Nenhum <code>Funcionario</code> cadastrado ainda.</h5>
</div>
{% endif %}
<hr />
<div class="text-right">
<a class="btn btn-primary"
href="{% url 'website:cadastra_funcionario' %}">
Cadastrar Funcionario

</div>
</div>
</div>
</div>
</div>
</div>
{% endblock %}

Nesse template:

e Utilizamos as seguintes classes do Bootstrap para_estilizar_as tabelas:

table para estilizar a tabela e thead-dark para escurecer o cabecalho.

e Na linha 13, utilizamos o filtro length para verificar se a lista de
funcionarios esta vazia. Se ela contiver dados, a tabela € mostrada. Se ela
estiver vazia, uma caixa com o texto “Nenhum Funciondrio cadastrado
ainda” sera mostrada.

e Utilizamos atag {% for funcionario in funcionarios %} na linha 30
para iterar sobre a lista funcionarios.

e Nas linhas 39 e 46 fazemos o link para as paginas de atualizacdo e

exclusao do usuario.

O resultado, sem Funcionarios cadastrados, deve ser esse:

https://getbootstrap.com/docs/5.1/content/tables/

© Lista de Funcionarios x +

4 C A O localhost

@ Pagina Inicial Funcionarios

Lista de Funcionario

Nenhum Funcionario cadastrado ainda.

Cadastrar Funcionario

E com um Funciondrio cadastrado:

© Lista de Funcionarios x +

d C 0O © localhost

@ Pagina Inicial Funcionarios

Lista de Funcionario

Aqui estd a lista de Funcionarios cadastrados.

ID Nome Sobrenome Tempo de Servigo Remuneragao Agoes

2 Jodo Carlos 5 15000,00

Quando o usuario clicar em “Excluir’, ele serd levado para a pagina
exclui.html e quando clicar em “Atualizar”’, ele serd levado para a pagina

atualiza.html.

Vamos agora construir a pagina de Atualizacao de Funcionarios!

TEMPLATE DE ATUALIZACAO DE FUNCIONARIOS

Template: website/atualiza.html

Nessa pagina, queremos que O usuario possa ver os dados atuais do
Funcionario e possa atualiza-los, conforme sua vontade. Para isso utilizamos a

View FuncionarioUpdateView que implementamos no capitulo passado.

Ela expde um formulario com os campos do modelo preenchidos com os

dados atuais para que o usuario possa alterar.

Vamos utilizar novamente a biblioteca Widget Tweaks para facilitar a
renderizacao dos campos de input.

Veja no codigo abaixo como podemos fazer nosso template:

{% extends "website/_layouts/base.html"™ %}
{% load widget_ tweaks %}
{% block title %}Atualizacao de Funcionario{% endblock %}

{% block conteudo %}
<div class="container">
<div class="row">
<div class="col-1g-12 col-md-12 col-sm-12 col-xs-12">
<div class="card">
<div class="card-body">
<h5 class="card-title">
Atualizacao de Dados do Funcionario
</h5>
<form method="post">
<!-- Ndo se esqueg¢a dessa tag -->
{% csrf_token %}

<!-- Nome -->
<div class="input-group mb-3">
<div class="input-group-prepend">
Nome

</div>

{% render_field form.nome class+="form-control™ %}
</div>

<!-- Sobrenome -->

<div class="input-group mb-3">
<div class="input-group-prepend">
Sobrenome
</div>
{% render_field form.sobrenome class+="form-control™ %}
</div>

<!-- CPF -->
<div class="input-group mb-3">
<div class="input-group-prepend">
CPF

</div>

{% render_field form.cpf class+="form-control™ %}
</div>

<!-- Tempo de Servig¢o -->

<div class="input-group mb-3">
<div class="input-group-prepend">
Tempo de Servigo

</div>

{% render_field form.tempo_de_servico class+="form-control"” %}
</div>

<!-- Remuneracdo -->

<div class="input-group mb-3">
<div class="input-group-prepend">
Remunerag¢ao
</div>
{% render_field form.remuneracao class+="form-control" %}
</div>
<button class="btn btn-primary">Enviar</button>
</form>
</div>
</div>
</div>
</div>
</div>
{% endblock %}

Nesse template, nao temos nada de novo.

Perceba que o codigo € similar ao template de adicao de Funcionarios,

com 0s campos sendo renderizados com a tag render_field.

Como nossa View herda de UpdateView, o objeto form ja vem populado

com os dados do modelo em questao (aquele cujo id foi enviado ao clicar no

botao de edic¢ao).

Sua interface deve ficar similar a:

® Atualizagao de Funcionario X+

q C A © localhost

@ Pégina Inicial Funcionarios

Atualizar Dados de Funcionario

Nome @ Joao

Sobrenome Carlos
CPF 123.456.789-00
Tempo de Servico 5

Remuneragao = 15000.00

o D

E por ultimo, temos o template de exclusao de Funcionarios.

TEMPLATE DE EXCLUSAO DE FUNCIONARIOS

Template: website/exclui.html

A funcao dessa pagina € mostrar uma pagina de confirmacao para o
usuario antes da exclusao de um Funcionario. Essa pagina vai concretizar a sua

exclusao.

A view que fizemos, a FuncionarioDeleteView, facilita bastante nossa vida.
Com ela, basta dispararmos uma requisicao POST para a URL configurada, que o

Funcionario sera deletado!

Dessa forma, nosso objetivo se resume a:

<!-- Estendemos do template base -->
{% extends "website/_layouts/base.html" %}

<!-- Bloco que define o <title></title> da nossa pdgina -->
{% block title %}Pagina Inicial{% endblock %}

<!-- Bloco de conteudo da nossa pdgina -->
{% block conteudo %}

<div class="container mt-5">

<div class="card">

<div class="card-body">
<h5 class="card-title">Exclusao de Funcionario</h5>
<p class="card-text">
Vocé tem certeza que quer excluir o funcionario {{ funcionario.nome }}?
</p>
<form method="post">
{% csrf_token %}
<hr />
<div class="text-right">

Cancelar

<button class="btn btn-danger">Excluir</button>
</div>
</form>
</div>
</div>
</div>
{% endblock %}

Aqui, novamente nada de novo.

Apenas mostramos o formulario onde o usuario pode decidir excluir ou

nao o Funcionario, que deve ficar assim:

© pagina Inicial x +

q C A © localhost

@ Pagina Inicial Funcionarios

Exclusao de Funcionario

Vocé tem certeza que quer excluir o funcionario Joao?

‘ Cancelar ‘ Excluir

Pronto! Com isso, temos todas as paginas do nosso projeto!

Vocé com certeza aprendeu bastante nessa caminhada! Mas calma que
ainda nao terminou, ainda temos mais conteddo para que vocé fique craque

em Django! Agora vamos ver como construir tags e filtros customizados!

TAGS E FILTROS CUSTOMIZADOS

Sabemos, até agora, que o Django possui uma grande variedade de filtros

e tags pré-configurados.

Contudo, é possivel que, em alguma situacao especifica, o Django nao te
ofereca o filtro ou tag necessarios.

Por isso, ele previu a possibilidade de vocé construir seus proéprios filtros
e tags! E ja que ele dispde dessa capacidade, vamos explora-la construindo
uma tag que ird nos dizer o tempo atual formatado e um filtro que ira retornar
a primeira letra da string passada.

Mas primeiro, vamos comecar com a configuragcao necessaria!

CONFIGURACAO

Os filtros e tags customizados residem em uma pasta especifica da nossa

estrutura: a /templatetags.

Sendo assim, «crie na raiz do app website essa pasta
(website/templatetags) e adicione:

e Um arquivo __init__.py em branco (para que o Django enxergue como
um pacote Python).
e O arquivo tempo_atual.py em branco referente a nossa tag.

e O arquivo primeira_letra.py em branco referente ao nosso filtro.

Nossa estrutura, portanto, deve ficar:

- website/

- templatetags/
- __init__.py
- tempo_atual.py
- primeira_letra.py

Para que o Django enxergue nossas tags e filtros € necessario que o app
onde eles estdao instalados esteja configurada na lista INSTALLED_APPS do

settings.py (N0 NOsso caso, website ja esta |3, portanto, nada a fazer aqui).
Também é necessario carrega-loscom o {% load filtro/tag %}.

E j& que temos que escolher um para comecar. vamos comecar

desenvolvendo o filtro.

Vamos chama-lo de primeira_letra e, quando estiver pronto, iremos

utiliza-lo da seguinte maneira:

<p>{{ valor|primeira_letra }}</p>

FILTRO primeira_letra

Filtros customizados sao basicamente funcdes que recebem um ou dois

argumentos. Sao eles:

e O valordoinput.
e O valor do argumento - que pode ter um valor padrao ou nao receber

nenhum valor.

Para ser um filtro valido, € necessario que o cdédigo dele contenha uma
variavel chamada register que seja uma instancia de template.Library (onde
todos os tags e filtros sao registrados).

Isso define um filtro!

Outra questao importante sao as Exceg¢des. Como a engine de templates
do Django nao prové tratamento de exceg¢ao: ao executar o codigo do filtro
qualquer excecao sera exposta como uma excec¢ao do proprio servidor.

Por isso, nosso filtro deve evitar lancar excegoées e, ao invés disso, deve
retornar um valor padrao.

Para entender melhor, vamos ver um exemplo de filtro nativo do proprio
Django.

Abra o arquivo django/template/defaultfilter.py. La temos a definicao de
diversos filtros que podemos utilizar em nossos templates (eu separei alguns e

vou explicar ali embaixo).

La temos o exemplo do filtro lower:

@register.filter(is_safe=True)
@stringfilter
def lower(value):
"""Convert a string into all lowercase.
return value.lower()

Nele:

e @register.filter(is_safe=True) € um decorator utilizado para registrar

sua funcdo como um filtro para o Django. S6 assim o framework vai

enxergar seu codigo (saiba mais sobre decorators no post do Blog da

Python Academy: Domine Decorators em Python).
e @stringfilter é um decorator utilizado para dizer ao Django que seu

filtro espera uma string como argumento.

Agora que viu um filtro real do Django, vamos codificar e registrar nosso

proprio filtro!

Uma forma de pegarmos a primeira letra de uma string é através da

indexacao, acessando o indice [0], da seguinte forma:

from django import template
from django.template.defaultfilters import stringfilter

register = template.Library()

@register.filter

@stringfilter

def primeira_letra(value):
return value[0]

Nesse codigo:

e O cdédigo register = template.Library() é necessario para pegarmos
uma instancia da biblioteca de filtros do Django. Com ela, podemos
registrar nosso filtro com @register.filter.

e @register.filter e @stringfilter sdo os decorators que citei aqui em

cima.

E agora vamos testar, fazendo o carregamento e utilizagcao em algum
template. Para isso, vamos alterar a tabela do template

website/lista.html para incluir nosso filtro da seguinte forma:

<!—- Primeiro, carregamos nosso filtro, logo apds o extends -->
{% load primeira_letra %}

<table class="table">
<thead class="thead-dark">
<tr>
<th><!-- Retiramos o "ID" aqui --></th>
<th>Nome</th>
<th>Sobrenome</th>
<th>Tempo de Servigo</th>
<th>Remuneracao</th>
<th class="text-center">Acoes</th>
</tr>
</thead>
<tbody>
{% for f in funcionarios %}

https://pythonacademy.com.br/blog/domine-decorators-em-python/

<tr>

<td>{{ f.nome|primeira_letra }}</td>
<td>{{ f.nome }}</td>
<td>{{ f.sobrenome }}</td>
<td>{{ f.tempo_de_servico }}</td>
<td>{{ f.remuneracao }}</td>
<td class="text-center">
<a class="btn btn-primary"
href="{% url 'website:atualiza_funcionario' pk=f.id %}">
Atualizar

<a class="btn btn-danger"
href="{% url 'website:deleta_funcionario' pk=f.id %}">
Excluir

</td>
</tr>
{% endfor %}
</tbody>
</table>

O que resulta em:

© Lista de Funcionarios X +

d C 0O © localhost

@ Pégina Inicial Funcionarios

Lista de Funcionario

Aqui estd a lista de Funcionarios cadastrados.

Nome Sobrenome Tempo de Servigo Remuneragao Acgoes

J Jodo Carlos 5 15000,00

E com isso, terminamos nosso primeiro filtro!

Agora vamos fazer nossa tag customizada: a tempo_atual!

TAG tempo_atual

De acordo com a documentacao do Django, “tags sGo mais complexas

que filtros pois podem fazer qualquer coisa”.

Desenvolver uma tag pode ser algo bem trabalhoso, dependendo do que
vocé deseja fazer. Mas também pode ser simples. Como nossa tag vai apenas
mostrar o tempo atual, sua implementacao nao deve ser complexa. Para isso,
utilizaremos um “atalho” do Django: a simple_tag!

A simple_tag - como a propria traducao ja diz: “simples tag” - € uma
ferramenta para construcao de tags simples. Com ela, a criacao de tags fica
similar a criacao de filtros, que vimos na secao passada.

Primeiro, precisamos incluir uma instancia de template.Library (para ter
acesso a biblioteca de filtros e tags do Django). Em seguida, utilizar
o decorator @register (para registrar nossa tag) e definir a implementacao da

nossa funcao.

Para pegar o tempo atual, podemos utilizar o método now() da
biblioteca datetime. Como queremos formatar a data, também utilizamos o
meétodo strftime(), passando como parametro a string formatada (%H é a hora,
%M sao 0s minutos e %S sao os segundos).

Podemos, entao, definir nossa tag da seguinte forma:

import datetime
from django import template

register = template.Library()
@register.simple_tag

def tempo_atual():
return datetime.datetime.now().strftime(' %H:%M:%S")

E para utiliza-la, a carregamos com {% load tempo_atual %} e em seguida
a utilizamos em nosso template com {% tempo _atual %}.

No nosso caso, vamos utilizar nossa tag no template-base que criamos: o

website/ layouts/base.html.

Vamos adicionar um novo item a barra de navegacao (do lado direito), da

seguinte forma:

<body>

<nav class="navbar navbar-expand-lg navbar-light bg-light">

<div class="collapse navbar-collapse" id="navbarSupportedContent">
<ul class="navbar-nav mr-auto">

<li class="nav-item active">

Pagina Inicial

</1li>
<li class="nav-item">

Funcionarios

</1li>

<ul class="navbar-nav float-right">
<li class="nav-item">

Hora: {% tempo_atual %}
</1i>

</div>
</nhav>

O resultado deve ser:

© Lista de Funcionarios X +

4 C O © localhost

@ Pégina Inicial Funcionarios

Hora: 16:12:42

Lista de Funcionario

Aqui estd a lista de Funcionarios cadastrados.

Nome Sobrenome Tempo de Servigo Remuneragao Agoes

J Joao Carlos 5

Veja a hora do lado direito superior, na barra de navegacao (Hora: 16:12:42)!

As possibilidades sdo infinitas!

Com isso, temos nosso filtro e tag customizados!

Agora vamos dar uma olhada nos filtros que estao presentes no proprio

Django: os Built-in Filters!

FILTROS DO DJANGO

E possivel fazer muita coisa com os filtros que ja vém instalados no
proprio Django. Muitas vezes, € melhor vocé fazer algumas operagdes no
template do que fazé-las no backend (desde que sejam operacdes de
apresentacao, apenas). Sempre verifique a viabilidade de um ou de outro para
facilitar sua vida!

Como a lista de built-in filters do Django é beeeeem extensa (veja a lista

completa aqui), vou listar aqui os que eu considero mais uteis!

Sem mais delongas, ai vai o primeiro: o capfirst!!!

FILTRO capfirst

O que faz: Torna o primeiro caracter do valor para maiusculo.
Exemplo:

Entrada: valor = 'esse é um texto'.

Utilizacégo:

{{ valor|capfirst }}

Saida:

Esse é um texto

FILTRO cut

O que faz: Remove todas as ocorréncias do parametro no valor passado.

Exemplo:
Entrada: valor = 'Esse E Um Texto De Testes'

Utilizacégo:

{{ valor|cut:" " }}

Saida:

https://docs.djangoproject.com/pt-br/4.0/ref/templates/builtins/#built-in-filter-reference
https://docs.djangoproject.com/pt-br/4.0/ref/templates/builtins/#built-in-filter-reference

EsseEUmTextoDeTestes

FILTRO date

O que faz: Utilizado para formatar datas. Possui uma grande variedade de
configuracdes (veja aqui).

Exemplo:

Entrada: Objeto datetime.

Utilizagégo:

{{ data|date:'d/m/Y' }}

Saida:

01/07/2018

FILTRO filesizeformat

O que faz: Transforma tamanhos de arquivos em valores legiveis.

Exemplo:
Entrada: valor = 123456789

Utilizacégo:

{{ valor|filesizeformat }}

Saida:

117.7 MB

FILTRO floatformat

O que faz: Arredonda numeros com ponto flutuante com o numero de casas
decimais passado por argumento.

Exemplo:

Entrada: valor = 14.25145

Utilizacéo:

{{ valor|floatformat:"2" }}

https://docs.djangoproject.com/pt-br/4.0/ref/templates/builtins/#date

Saida:

14.25

FILTRO join

O que faz: Junta uma lista utilizando a string passada como argumento como

separador.

Exemplo:.
Entrada: valor = ["Marcos", "Joao", "Luiz"]

Utilizacégo:

{{ valor]|join:" - " }}

Saida:

Marcos - Joao - Luiz

FILTRO length

O que faz: Retorna o comprimento de uma lista ou string. E muito utilizado
para saber se existem valores na lista (se length > O, lista ndao esta vazia).
Exemplo:

Entrada: valor = ['Marcos', 'Jodo']

Utilizagégo:

{% if valor|length > @ %}
<p>Lista contém valores</p>
{% else %}
<p>Lista vazia</p>
{% endif %}

Saida:

<p>Lista contém valores</p>

FILTRO lower

O que faz: Transforma todos os caracteres de uma string em minusculas.

Exemplo:.

Entrada; valor = PaRalLelLePiPeDo

Utilizagéo:

{{ valor|lower }}

Saida:

paralelepipedo

FILTRO pluralize

O que faz: Retorna um sufixo plural caso o numero seja maior que 1.
Exemplo:.

Entrada: valor = 12

Utilizagéo:

Sua empresa tem {{ valor }} Funcionario{{ valor|pluralize:"s" }}

Saida:

Sua empresa tem 12 Funcionarios

FILTRO upper

O que faz: Transforma em maisculo todos caracteres da string.
Exemplo:

Entrada: valor = texto de testes

Utilizagégo:

{{ valor|upper }}

Saida:

TEXTO DE TESTES

FILTRO wordcount

O que faz: Retorna o numero de palavras da string.
Exemplo:.

Entrada: valor = Django é o melhor framework web

Utilizagéo:

{{ valor|wordcount }}

Saida:

Cédigo
O cddigo completo desenvolvido nesse projeto esta disponivel no Github
da Python Academy. Clique aqui para acessa-lo e baixa-lo!

Para rodar o projeto, execute em seu terminal:

e pip install -r requirements.txt parainstalar as dependéncias.

e python manage.py makemigrations para criar as Migragoes.

e python manage.py migrate para efetivar as Migragdées no banco de dados.

e python manage.py runserver para executar o servidor de testes do
Django.

e Acessar o seu navegador na pagina http://localhost:8000 (por padrio).

E pronto... Servidor rodando! @

Conclusao do Capitulo

Neste capitulo vimos como configurar, customizar e estender templates,
como utilizar os filtros e tags do Django, como criar tags e filtros customizados

e um pouquinho de Bootstrap, para deixar as paginas bonitonas!

https://github.com/pythonacademybr/HelloWorldDjango

UM ATE BREVE...

Finalmente chegamos ao fim do nosso ebook! Mas, como vocé sabe, o
Django esta em constante evolucao. Por isso, € bom vocé se manter atualizado

nas novidades lendo, pesquisando e acompanhando o mundo do Django.

E deixo aqui novamente o convite para vocé conhecer a Jornada Python:
& vocé vai aprender do basico ao avancado, com projetos completo e com
usabilidade real, dicas de carreira, certificado, suporte a duvidas, além de dar
continuidade aos seus estudos de Django, com conteudos em video, Quizzes,

projetos mais complexos e muito mais!
Cligue na imagem abaixo agora mesmo para conhecer a Jornada Python!

Te espero la &

u JORNADA

l'l\l'l'l_l'ﬂ
I I ViINiIN

O curso completo de Python da (\ PYTHHN

ACADEM

CLIQUE AQUI PARA CONHECER!

@

https://bit.ly/3coubjF

